Session Programme Meeting Programme Personal Programme Search
 
Quick Search
Programme Groups
Great Debates
Union Symposia
Educational Symposia
Atmospheric Sciences
Biogeosciences
Climate: Past, Present, Future
Cryospheric Sciences
Energy, Resources and the Environment
Geochemistry, Mineralogy, Petrology & Volcanology
Geodesy
Geodynamics
Geomorphology
Geophysical Instrumentation
Hydrological Sciences
Magnetism, Palaeomagnetism, Rock Physics & Geomaterials
Natural Hazards
Nonlinear Processes in Geophysics
Ocean Sciences
Planetary and Solar System Sciences
Seismology
Soil System Sciences
Solar-Terrestrial Sciences
Stratigraphy, Sedimentology and Palaeontology
Tectonics and Structural Geology
Medal Lectures
Key Note Lectures
Key Note Sessions
Division Business Meetings
Editorial Board Meetings
Townhall Meetings
Splinter Meetings
Union Meetings
  Information - HS41/SSS8 Hydrogeophysics - methods to identify properties and monitor processes governing water flow and solute transport in groundwater and vadose zones (co-organized by SSS)

Event Information
The shallow subsurface is an extremely important zone that yields much of our water resources and also serves as the repository for municipal, industrial and government waste. The near-surface environment also acts as a buffer and filter for contaminants introduced by agricultural activities. As safe and effective use of the subsurface environment is a major challenge facing our society, there is a great need to improve our understanding of the shallow subsurface. With an increasing demand for investigation methods that have both high accuracy and resolution across a variety of spatial scales, a new discipline of hydrogeophysics has evolved, which aims at combining knowledge from various disciplines like hydrology, hydrogeology, soil physics and geophysics thereby striving to improve subsurface characterization and monitoring. Geophysical methods offer the advantage of being able to measure subsurface structures and to estimate transport properties in a non-invasive and dynamic manner. In spite of numerous successful examples of the combined use of geophysical methods and hydrological investigations in subsurface environments, several obstacles exist for systematically implementing successful hydrogeophysical investigations, and these obstacles form the basis for much of the research within this discipline. The purpose of this section is to discuss recent research advances within the emerging discipline of hydrogeophysics, including those associated with basic theory, geophysical instrumentation improvement, development of emerging technologies, geophysical data inversion approaches and joint inversion, methods for fusing hydrological, hydrogeological and geophysical data, and development of petrophysical models relating geophysical, hydrological and geological parameters. In addition to these research fronts, we also solicit hydrogeophysical case studies that illustrate the potential, benefits, or limitations of hydrogeophysical investigations over a wide range of spatial and temporal scales in both the vadose zone and groundwater. This session should be of interest to researchers across a variety of disciplines, including those investigators who are interested in using geophysical methods and data for improved subsurface characterization and monitoring as well as those who are active in hydrogeophysical research.

Preliminary List of Solicited Speakers
Dr. Sebastien Lambot, Technical University of Delft, Netherlands
Dr. Mike Kowalsky,Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California.

Co-Sponsorship

General Statement
The information contained hereafter has been compiled and uploaded by the Session Organizers via the "Organizer Session Form". The Session Organizers have therefore the sole responsibility that this information is true and accurate at the date of publication, and the conference organizer cannot accept any legal responsibility for any errors or omissions that may be made, and he makes no warranty, expressed or implied, with regard to the material published.



Back to Session Programme

 
 
 
 


©2002-2008 Copernicus Systems + Technology GmbH