Session Programme Meeting Programme Personal Programme Search
 
Quick Search
Natural Hazards
Meteorological Hazards
Hydrological Hazards
Landslide Hazards
Earthquake Hazards
Volcanic Hazards
Sea and Ocean Hazards
Snow Avalanches and other Glacial hazards
Other Hazards (e.g. karst topography, heavy-metal contamination, asteroid impacts, ...)
Multidisciplinary Approaches for Risk Assessment, Mapping, Disaster Management & Mitigation Strategies
Historical Information, Databases and Dating Techniques for Natural Hazards and Risk Assessment
New Technologies for Natural Hazards and Risk Assessment
Programme Groups
Great Debates
Union Symposia
Educational Symposia
Atmospheric Sciences
Biogeosciences
Climate: Past, Present, Future
Cryospheric Sciences
Energy, Resources and the Environment
Geochemistry, Mineralogy, Petrology & Volcanology
Geodesy
Geodynamics
Geomorphology
Geophysical Instrumentation
Hydrological Sciences
Magnetism, Palaeomagnetism, Rock Physics & Geomaterials
Natural Hazards
Nonlinear Processes in Geophysics
Ocean Sciences
Planetary and Solar System Sciences
Seismology
Soil System Sciences
Solar-Terrestrial Sciences
Stratigraphy, Sedimentology and Palaeontology
Tectonics and Structural Geology
Medal Lectures
Key Note Lectures
Key Note Sessions
Division Business Meetings
Editorial Board Meetings
Townhall Meetings
Splinter Meetings
Union Meetings
  Information - NH4.03 Deformation processes and accompanying mechanical and electromagnetic phenomena, for rocks and other materials, from the laboratory to the geophysical scale

Event Information
During a gradual increase of stress on rock samples and before their rupture, electromagnetic anomalies have been recorded from DC-ULF, VLF, up to VHF frequency bands. On the other hand, broad range electromagnetic precursors falling in the same frequency bands have been internationally reported before large earthquakes. Thus, the technique of measuring electromagnetic radiation emitted during rock fracturing is a candidate for forecasting global failure both in the laboratory and the geophysical scales.Until now, the physical mechanism of the generation of these precursors remains an open book. An essential requirement for this type of knowledge is a careful laboratory investigation of rock failure. A similar investigation between the pre-fracture electromagnetic emissions in laboratory-scale experiments and tectonic-scale events is suggested.
Accumulated laboratory evidence also suggests that both electromagnetic and acoustic emissions ("laboratory earthquakes") are two sides of the same coin; both are caused by the opening cracks population. Recently, electromagnetic and acoustic studies in terms of self-organized complexity indicate that the same dynamics may govern the large earthquake and the laboratory scale sample rheological structure. The above statements encourage the investigation of the connection between seismic, geodynamic, geodetic and electromagnetic investigations, as well as the dependence of this connection on the general properties of the under deformation complex system. Beyond these investigations, a number of other approaches (e.g.
Thermal Infrared Radiances) observed both in the laboratory and the geophysical scales strengthen the idea that such multidisciplinary efforts will enhance the understanding of the physics behind these observations and thus take us one stop closer to fracture prediction in disordered media. The achievement of converging estimations would definitely improve the chances for an earthquake prediction. The earthquakes are made of many highly interconnected parts on many scales. The improvement of their prediction must be the result of many highly interconnected scientific teams.

Preliminary List of Solicited Speakers

Co-Sponsorship

General Statement
The information contained hereafter has been compiled and uploaded by the Session Organizers via the "Organizer Session Form". The Session Organizers have therefore the sole responsibility that this information is true and accurate at the date of publication, and the conference organizer cannot accept any legal responsibility for any errors or omissions that may be made, and he makes no warranty, expressed or implied, with regard to the material published.



Back to Session Programme

 
 
 
 


©2002-2008 Copernicus Systems + Technology GmbH