|  | List of Accepted Contributions - NP5.01 Quantifying predictability 
Please, click Abstract Number to find the corresponding abstract as PDF
file; if necessary, download  Adobe Acrobat Reader 4.0
first to open the file.
Any abstract may be freely reproduced for non-commercial, scientific
purposes; however, the moral right of the author(s) to be identified as the
author(s) of such abstracts is asserted. 
    
      
  |  | EGU2007-A-00545 Young, R.; Read, P. L.
 Intrinsic predictability measures of baroclinic chaos and quasi-periodic flow in the rotating annulus
 |  
   
    
      
  |  | EGU2007-A-01726 Ruessink, B.G.
 Predictability Experiments of Nearshore Bathymetry using a Process-based Numerical Model
 |  
   
    
      
  |  | EGU2007-A-02394 Rivière, O.; Lapeyre, G.; Talagrand, O.
 Nonlinear moist sensitivity of baroclinic systems
 |  
   
    
      
  |  | EGU2007-A-02651 Beretta, G.P.; Felletti, F.
 Boulders expectation in glacial till tunneling: a transition probability geostatistical approach.
 |  
   
    
      
  |  | EGU2007-A-02787 Vannitsem, S.; Nicolis, C.
 Dynamical properties of model output statistics forecasts
 |  
   
    
      
  |  | EGU2007-A-04040 Rabier, F; Gauthier, P; Langland, R
 Objectives of the THORPEX working group on data assimilation and observing strategies for high impact weather forecast improvements
 |  
   
    
      
  |  | EGU2007-A-04364 Hallerberg, S.; Kantz, H.
 When are extreme events the better predictable, the more extreme they are?
 |  
   
    
      
  |  | EGU2007-A-04502 Hachay, O.
 A new method for estimation of the stability station of rock massive by their outworking in deep mines.
 |  
   
    
      
  |  | EGU2007-A-05171 Macor, J.; Schertzer, D.; Lovejoy, S.
 Multifractal predictability of short-time forecast
 |  
   
    
      
  |  | EGU2007-A-06898 Andrianova, A.; Binter, R.; Smith, L.A.
 Benchmarks for Weather Forecasts in the medium range and beyond.
 |  
   
    
      
  |  | EGU2007-A-06935 Smith, L.A.; Du, H.; Binter, R.; Broecker, J.; Clarke, L.
 A framework for investigating: "How large should an ensemble be?"
 |  
   
    
      
  |  | EGU2007-A-07389 Machete, R. L.; Broecker, J. ; Kilminster, D.; Smith, L. A.; Moroz, I. M.
 Quantifying Predictability using Multiple Ensembles Models under different Models: Limitations on the value of Probabilitic Forecasting
 |  
   
    
      
  |  | EGU2007-A-07461 Binter, R.; Broecker, J.; Penzer, J.; Smith, L.A.
 Contrasting methods of ensemble interpretation
 |  
   
    
      
  |  | EGU2007-A-08760 Doblas-Reyes, F. J.; Weisheimer, A.; Berner, J.; Palmer, T. N.
 Model error reduction in ensemble seasonal predictions with stochastic parametrizations
 |  
   
    
      
  |  | EGU2007-A-08852 Martín, A.; Homar, V.; Fita, LL.; Gutiérrez, J.M.; Rodríguez, M.A.; Primo, C.
 Geometric vs classical breding of vectors: Application to hazardous weather in the Western Mediterranean
 |  
   
    
      
  |  | EGU2007-A-09013 Broecker, J.; Smith, L. A.
 On the relative value of a High Resolution Forecast in an Ensemble Prediction System
 |  
   
    
      
  |  | EGU2007-A-09060 Broecker, J.; Smith, L. A.
 Scoring Probabilistic Forecasts: The Importance of Being Proper
 |  
   
    
      
  |  | EGU2007-A-09115 Broecker, J.; Smith, L. A.
 Increasing the Reliability of Reliability Diagrams
 |  
   
    
      
  |  | EGU2007-A-09148 Ghil, M.; Chekroun, M.; Simonnet, E.
 Robust estimates of climate change and the generalization of structural stability
 |  
   
    
      
  |  | EGU2007-A-10002 Ngan, K.; Bartello, P.; Straub, D.N.
 Predictability of rotating stratified turbulence
 |  
   
    
      
  |  | EGU2007-A-10775 Reynolds, C.; Teixeira, J.; McLay, J.; Bishop, C.
 Stochastic parameterizations: Impact on short-term perturbation growth and ensemble prediction.
 |  
   
    
      
  |  | EGU2007-A-11119 Hou, D.; Toth, Z.
 A stochastic perturbation scheme for representing model related uncertainty in ensemble forecasting
 |  
   
    
      
  |  | EGU2007-A-11127 Son, J.-H.; Hou, D.; Toth, Z.
 An anaysis of different bias-correction algorithms in a synthetic environment
 |  
  Back to Session Programme
 |  |