Geophysical Research Abstracts, Vol. 10, EGU2008-A-10627, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-10627 EGU General Assembly 2008 © Author(s) 2008

Helium isotopes in ferromanganese crusts

S. Basu, F.M. Stuart

Isotope Geosciences Unit, Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride, G75 0QF, UK (s.basu@suerc.gla.ac.uk)

The He isotope systematics of ferromanganese crusts from the deep ocean floor can be explained by a mixture of extraterrestrial helium (implanted solar wind and galactic cosmic rays (GCR)) and terrestrial helium (radiogenic) from wind borne continental dust grains. ³He/⁴He are typically in the range 10-20 R_a similar to values measured in ferromanganese nodules However we have identified one crust, 237KD, from the Central Pacific Ocean that has extremely high ${}^{3}\text{He}/{}^{4}\text{He}$ (up to 4440 R_{a}) that are comparable to the highest ratios measured in interplanetary dust particles (IDP) and micrometeorites (MM). The extremely high 3 He concentrations, up to 8 x 10 9 atoms/g, cannot be explained by the presence of undegassed IDP, but requires that the extraterrestrial He is carried by occasional, high concentration GCR-He-bearing particles like MM. An excess of ⁶⁰Fe in 237KD has been hailed as the first evidence of debris from a nearby supernova explosion. But ⁶⁰Fe can also be produced from GCR reactions on Ni in extraterrestrial material. The maximum ³He/⁶⁰Fe of 237KD samples (100-800) is comparable to the $({}^{3}\text{He}/{}^{60}\text{Fe})_{GCB}$ (400-500) predicted for Ni-rich minerals that are common in iron meteorites. Consequently it is likely that the excess ⁶⁰Fe originates from infalling MMs and is not derived from a supernova.

³He and ⁴He concentrations, and ³He/⁴He increase significantly from c 5 Ma. This is likely to be related to the increased trapping efficiency of infalling dense MM. We suggest that this is due to a decrease in the water current strength resulting from the closure of the Panama gateway. If change in ³He/⁴He (and ³He) can be an efficient tracer of increase in MM flux, that maybe related to regional circulation variation, will be tested in other ferromanganese crusts.