Geophysical Research Abstracts, Vol. 10, EGU2008-A-10468, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-10468 EGU General Assembly 2008 © Author(s) 2008

Experimental insight into the effect of water activity on mineral reaction rates at high pressure and temperature

J. Gasc (1), F. Brunet (1), J. Corvisier (1), A. Verlaguet (1,2), N. Findling (1), C. Lathe (3), and B. Goffé (1)

(1) Laboratoire de géologie, Ecole Normale supérieure, CNRS-UMR8538, Paris, France (gasc@geologie.ens.fr), (2) Division géologie-géochimie, Institut Français du pétrole, 92852 Rueil-Malmaison cedex, France, (3) HASYLAB am DESY, D-22603 Hamburg, Germany

Using the MAX80 cubic multi-anvil press installed on the German synchrotron (HASYLAB-DESY, Hamburg), we have monitored from *in-situ* X-ray diffraction, the transformation rate of the exchange reaction, $Ca(OH)_2 + MgCO_3 = CaCO_3 + Mg(OH)_2$, at 1.7 GPa for temperatures below 600°C (*i.e* in the field of aragonite). Although this reaction involves H₂O as chemical component, no water is release nor consumed in the course of the reaction. These experiments were performed either under controlled dry conditions (low H₂O activity) or under the humidity of the pressure assembly; the Ca(OH)₂ + MgCO₃ starting material, composed of a fine powder, being initially submitted to the ambient air moisture. Under these pressure and temperature conditions, the free energy of this exchange reaction is of -30 to -35 kJ.mol.⁻¹. Additional experiments were performed under excess water conditions in a piston-cylinder apparatus (starting material sealed together with water in a gold capsule) at 1.7 GPa, 100, 120 and 150°C for different run durations.

Reaction progress plotted as a function of time shows kinetic curves with shapes which are consistent with a reaction dominated by nucleation and limited by the transport of the chemical species (i.e., CO_2 and H_2O). SEM images show that Ca and Mg are immobile in first approximation ; CO_2 and H_2O are therefore the exchanged species. The major result of this experimental study is that for the same fine-grained starting

powder, nucleation occurs at the same kinetics under dry and excess-water conditions at two very different temperatures, 550 and 150°C, respectively. Extrapolation of the Arrhenius plot of half reaction-time shows that when half reaction is achieved within a few seconds at ca. 250° C under excess water, the same reaction progress will be never reached under dry conditions, even at the geological scale.

These experimental results are being interpreted using a "home made" numerical model which takes into account the respective kinetics of both nucleation and diffusion and grain-size effects. Then, these data will be extrapolated to naturally relevant conditions (i.e., dry and water saturated, large grain sizes etc ...).