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The eruption of kimberlite magma must be governed by the same physical and chemi-
cal principles controlling eruption of basaltic to rhyolitic magmas. However, this does
not mean that kimberlite behavior can be understood by simple linear extrapolation of
ideas developed for other volcanoes. The most unique aspect of kimberlite magmas
is their potential for having high dissolved contents of primary volatiles (e g0 H

CO; > 15 wt. %) coupled to a high ascent rate. The high ascent rates ensures that
higher volatile contents are maintained to the point of eruption. Here, we use recent
results in experimental and theoretical petrology [1, 2] to explore and amplify con-
cepts that have been advanced for the emplacement and eruption of kimberlite [3, 4,
5, 6]. Specifically, recently published thermodynamic models fo©HO,-silicate

melt equilibria [1, 2] are used to simulate melt-solid-fluid equilibria during emplace-
ment and eruption of kimberlite. These new thermodynamic models forecast volatile
solubilities as a function of T, P and melt composition and can track energetics (e.g.,
enthalpy, heat capacity) and volume relationships. Heat contents are critical for eval-
uating the extent to which these systems are able to cool during eruption relative to
their characteristic glass transition temperatures [7, 8, 9]. Efficient cooling can pro-
mote glass formation. More importantly, these calculations can explore the volume
relationships between melt, fluid and solid [4, 7, 10, 11]. These relationships have di-
rect consequences for the style and duration of volcanic eruption, the size and stability
of the volcanic plume, depths of magmatic fragmentation, and conduit evolution. We
use these calculations to test the premise that the geometries of the Diavik kimberlite
pipes (Diameter: 120-140 m; Depth: 350-400 m) are ultimately a reflection of eruption



intensity (e.g., diameter volume flux) and duration (depthtime).
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