Geophysical Research Abstracts, Vol. 10, EGU2008-A-08203, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-08203 EGU General Assembly 2008 © Author(s) 2008



## The thermal impacts of crystal fractionation and volatile degassing from an incipient basaltic magma chamber

F. Witham, S. Sparks, J. Phillips

Department of Earth Sciences, University of Bristol, UK.

fred.witham@bristol.ac.uk / Fax: +441179253385 / Phone: +441179545244

A one-dimensional model of heat flow inside an incipient magma reservoir is derived by considering the thermal effect of repeated basaltic sill intrusions into a column of rock. The critical minimum magma flux rate required in order to maintain melt within the column indefinitely, i.e. to form a molten body or 'magma chamber', is found as a function of intrusion depths between 50 m and 30 km. For shallow intrusions (< 1 km), this critical flux is inversely proportional to depth, whereas for deep intrusions the critical magma flux is only weakly dependent on depth, with a value of  $10^{-9}$  m s<sup>-1</sup>. This compares with estimated fluxes at Kilauea, Hawaii, of  $10^{-6}$  m s<sup>-1</sup>, based on magma supply rates from Swanson (1972) and a reservoir area of 0.5 km<sup>2</sup> (Dawson et al., 1999).

By performing simulations using both wet and dry basalt phase relations and a simplified model of fractional crystallisation, we assess the effects of crystal/melt segregation and volcanic degassing on the potential to form a magma chamber. Both fractional crystallisation and degassing enhance crystallisation rates, so greater magma fluxes are required to produce a long-lived magma chamber. For 25 m thick intrusions injected at a depth of 1 km or greater, and a composition based on the 1921 basaltic Kilauea lava studied by Yoder and Tilley (1962), magma fluxes of over  $2 \times 10^{-9}$  m s<sup>-1</sup> will cause a persistent chamber to form. Fluxes under  $6 \times 10^{-10}$  m s<sup>-1</sup> are insufficient to sustain melt between intrusions. Intermediate fluxes may or may not sustain a magma reservoir depending on the initial volatile contents of the magma, the extent of degassing of the magma between intrusions and whether effective fractionation can occur.