Geophysical Research Abstracts, Vol. 10, EGU2008-A-08200, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-08200 EGU General Assembly 2008 © Author(s) 2008

Phase transitions at ambient and high-T along the amphibole join richterite – "magnesiorichterite"

G. Iezzi (1), G. Della Ventura (2), M. Tribaudino (3), P. Nemeth (4), I. Margiolaki (5), A. Cavallo (6), H. Behrens (7), F. Gaillard (8).

Università G. d'Annunzio, Chieti, Italy, g.iezzi@unich.it, (2) Università Roma Tre, Italy, (3) INGV, Roma, Italy, (3) Università di Parma, Italy, (4) Hungarian Academy of Sciences, Budapest, Hungary, (5) ESRF, Grenoble, France, (6) INGV-Roma, Italy, (7) Leibniz Universitat, Hannover, Germany, (8) ISTO-CNRS, Orléans, France.

Ten amphibole compositions along the P_{21}/m Na(NaMg)Mg₅Si₈O₂₂(OH)₂ ("magnesiorichterite") - C2/m Na(NaCa)Mg₅Si₈O₂₂(OH)₂ (richterite) join were synthesized at 800-850°C and 0.35-0.5 GPa. The run-products were characterized by a combination of SEM-EDS, EPMA-WDS, XRPD, SAED-TEM and FTIR OH-stretching spectroscopy. The microchemical data show that a complete solid-solution is obtained along the join, which is characterized by the^B(Na₁Mg_xCa_{1-x}) (with $0 \le x \le 1$) substitutional vector. A slight departure from the nominal compositions following the A Na^B_xNa_x vs ${}^{A}_{1-x}{}^{B}$ M ${}^{2+}_{2-x}$ exchange (with M²⁺= Mg or Ca) is observed. Refinement of the X-ray powder diffraction-patterns shows a major variation for the *a* and β cell parameters, with only minor variations (< 1% relative) for the *b* and *c* edges.

At room-*T*, the FTIR OH-stretching spectra of the ^BMg-richer compositions show two intense absorptions, which are assigned to two independent O-H groups in the primitive structure. The frequency separations of these bands is progressively reduced as ^BCa increases. In agreement with this assignment, SAED patterns show h + k odd reflections for the same samples. Conversely, the amphiboles with Bsite compositions between (Na₁Mg_{0.6}Ca_{0.4}) and (Na₁Ca₁) show a unique and symmetric OH-stretching band, indicative of a *C*-lattice. Therefore, along the examined join the $P2_1/m \leftrightarrow C2/m$ phase-transition at room-*T* occurs at the Na(Na₁Mg_{0.7}Ca_{0.3})Mg₅Si₈O₂₂(OH)₂stoichiometry. The Mg-richer $P2_1/m$ amphiboles reverse their structure to C2/m at high-T by a displacive transformation. The spontaneous strain parameters fitted by Landau expansions indicate that the end-member "magnesiorichterite" follows a tricritical behavior, whereas the presence of ^BCa induces a second order type transformation. The measured T_c is linearly related to the amount of ^BMg in the amphibole, i.e. is a linear function of the mean aggregate ionic radius at the M(4) site.