

Exhumation of the Mont Blanc and Gotthard massifs, forced by tectonics or climate?

C. Glotzbach (1), J. Reinecker (1), M. Danišík (1), M. Rahn (2), W. Frisch (1), C. Spiegel (3)

(1) Institute of Geoscience, University of Tübingen, Germany, (2) Institute of Mineralogy-Geochemistry, University of Freiburg, Germany, (3) FB5 Geoscience, University of Bremen, Germany (christoph.glotzbach@uni-tuebingen.de / Phone: +4970712975240)

We present new zircon and apatite fission track and apatite (U-Th)/He data from two tunnel transects crossing the Gotthard and Mont Blanc massifs. Horizontal and vertical profiles along these transects allow to draw conclusions about the spatial and temporal exhumation history of the massifs.

Exhumation of the Mont Blanc massif was episodical with fast exhumation before \sim 6 Ma (\sim 3 km/Myr), followed by slow exhumation and again fast exhumation after \sim 3 Ma (>1 km/Myr). In contrast, exhumation in the Gotthard massif was constant (\sim 0.5 km/Myr) after \sim 15 Ma. Fault activity and blocktilting within the massifs were not significant during the last \sim 15 Ma.

We suggest that the Mont Blanc massif was thrusted northwestward before \sim 6 Ma causing the observed fast exhumation event. The acceleration in exhumation after \sim 3 Ma is also reported for other external massifs, except the Gotthard massif. This argues against a climate triggered exhumation event. During the Pliocene the Western and Central Alps are characterized by a general change in the orientation of extension: from orogen-parallel to orogen-perpendicular. This led to normal faulting along orogen-parallel faults accompanied by exhumation of the external massifs. A reconstruction of the Mont Blanc palaeorelief, however, indicates that a great amount of post \sim 3 Ma exhumation was caused by rapid valley incision related to glaciation. We therefore propose that fast exhumation after \sim 3 Ma of the external massifs was

triggered by tectonics and amplified by climate.