

Anthropogenic CO₂ and acidification in the Arctic Ocean

Toste Tanhua (1), E. Peter Jones (2), Emil Jeansson (3), Sara Jutterström (4), William M. Smethie (5), Douglas W.R. Wallace (1), Leif G. Anderson (4).

(1) Leibniz Institute of Marine Sciences, Kiel, Germany, (2) Bedford Institute of Oceanography, Dartmouth, NS, Canada, (3) Bjerknes Centre for Climate Research, Bergen Norway, (4) Göteborg University, Göteborg, Sweden, (5) Lamont-Doherty Earth Observatory, Palisades, NY, USA.

The concentration and inventory of anthropogenic CO₂ (C_{ant}) in the Arctic Ocean is poorly known despite its relatively large volume of well ventilated waters. We use a synthesis of available CFC and SF₆ measurements from close to ten thousand individual tracer samples to calculate the Arctic Ocean C_{ant} inventory. For these calculations we have used the Transit Time Distribution (TTD) method, where the TTD is calculated from the tracer data, and then applied to the known atmospheric CO₂ increase, assuming time-invariant air-sea equilibrium of CO₂, to calculate the oceanic C_{ant} content. The C_{ant} field is then integrated over the Arctic Ocean and the inventory is calculated. We find that the Arctic Ocean holds about 2 % of the global oceanic C_{ant} inventory. We will show horizontal distributions of C_{ant} as well as depth integrated profiles from the individual basins.