Geophysical Research Abstracts, Vol. 10, EGU2008-A-07046, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-07046 EGU General Assembly 2008 © Author(s) 2008

Three types of PGE spectra in basalts of Kamchatka

A.V. Ivanov (1), A.B. Perepelov (2), E.I. Demonterova (1), E.N. Grib (3), S.V. Palesskii (4), I.V. Nikolaeva (4)

(1) Institute of the Earth's Crust SB RAS, Irkutsk, Russia (aivanov@crust.irk.ru), (2) Vinogradov Institute of Geochemistry SB RAS, Irkutsk, Russia, (3) Institute of Volcanology and Seismology FEB RAS, Petropavlovsk-Kamchatsky, Russia, (4) Institute of Geology and Mineralogy SB RAS, Novosibirsk, Russia

Kamchatka arc system is composed of two parallel arcs; the frontal arc of the Eastern and Southern Kamchatka and rear arc of the Sredinny ridge. Low-K and moderately-K basalts with typical arc trace element patterns are the dominant rock types in the Eastern Kamchatka. Sredinny ridge and the Southern Kamchatka are characterized by moderately-K and high-K 'arc'-type basalts. Sredinny ridge is unusual for presence of alkaline basalts with trace element patterns typical for many intracontinental rifts. We analyzed low-K, moderately-K and alkaline basalts from the Eastern Kamchatka and Sredinny Ridge by isotope-dilution ICP-MS for PGE (Ir, Os, Ru, Pt and Pd) and Re. For comparison we analyzed alkaline basalts from Zhom-Bolok volcanic group of the Baikal rift. Low-K, moderately-K and alkaline basalts of the Kamchatka show distinct PGE chondrite-normalized patterns irrespective of their position within the arc system. Low-K basalts are generally higher in all PGE compared to moderately-K basalts, though the both types show similar patterns with low Os, Ir and Ru and high Pt and Pd chondrite-normalized concentrations. The alkaline basalts show depletion of Ir and Pd compared to the moderately-K basalts at comparable concentrations of other PGE. Re concentrations in all the three types are comparable due to post-eruption degassing. Alkaline basalts of the Baikal rift are the most depleted in PGE among studied, though their PGE+Re chondrite-normalized patterns are similar to those of the alkaline basalts of Kamchatka. We couple PGE data with other trace elements and Sr-Nd-Pb isotopes and explain their variations by variable degrees of partial melting of two sources beneath Kamchatka; the mantle wedge and recycled Kula slab. Supported by RFBR 07-05-00959, 08-05-98100, 08-03-00558 and SB RAS 6.9 projects.