
Geophysical Research Abstracts,
Vol. 10, EGU2008-A-06932, 2008
SRef-ID: 1607-7962/gra/EGU2008-A-06932
EGU General Assembly 2008
© Author(s) 2008

Visualization and data compression for multi-variable
geophysical flow simulations
J. Schmalzl(1) and A. Loddoch(2)
(1) Inst. of Geophysics, Muenster University, Germany (joergs@uni-muenster.de), (2) Chevron
ETC, Technical Computing, Houston, U.S.A.

Numerical simulations play a key role in understanding the Earth’s dynamic. Many
of the problems investigated are intrinsically three dimensional and exhibit a time de-
pendent behavior. The temporal fluctuations occur over a wide range of different time
scales. Another complication comes from the number of flow variables involved. For
a simulation designated to understand the Earth’s dynamo one has at least three ve-
locity components, three magnetic field component, a temperature, a composition and
the pressure. This combined with a typical numerical resolution of 256x256x256 a
single model run can easily produce output data in the Terra-byte range. In order to
understand the physical mechanism it is often essential to visualize the spatial and
temporal evolution of the data and to postprocess the result. One way of doing this is
to visualize the data while calculating the data. This has the advantage of not being
forced to store the data. One of the problems with this approach is that only a small
subset of the information is preserved and one may need to rerun the complete simu-
lation in order to extract additional information. Our approach to the problem is to use
lossy data compression similar to still image data storage(JPEG). Since the govern-
ing equations from which the data are calculated contain a diffusive term the spatial
variation of the quantities is smooth. This makes them well suited for compression
using a discret cosines transform (DCT) like in the JPEG algorithm. We will present
an investigation of compression ratio, compression/decompression time, and resulting
errors for different schemes. For visualizing and post-processing the data we have de-
veloped our own OpenGL based program. We consider this approach superior to using
a general purpose package. The program can easily be adopted for utilizing the latest



hardware developments like multi-textures and is portable across different machine
architectures.


