

Estimating interannual variability of oceanic biogeochemistry from atmospheric O₂/N₂ and CO₂ measurements

C. Rödenbeck (1), C. Le Quéré (1,2), N. Cassar (3), Y. Tohjima (4), M. Heimann (1), R. Keeling (5)

(1) Max Planck Institute for Biogeochemistry Jena (Germany), (2) now at the Univ. of East Anglia and British Antarctic Survey (UK), (3) Princeton University (USA) (4) National Institute for Environmental Studies, Tsukuba (Japan), (5) Scripps Institution of Oceanography, University of California (USA)

Atmospheric measurements of O₂/N₂ and CO₂ at up to 16 sites have been used to infer the interannual variations in ocean-atmosphere O₂ exchange with an inverse method. The method distinguishes the regional contributions of at least 3 latitudinal bands, with increasing spatial resolution the more sites are used. The interannual variations of the inferred O₂ fluxes in the tropical band correlate significantly with the El Niño/Southern Oscillation. Tropical O₂ variations appear to be dominated by the ventilation of the O₂ minimum zone from variations in Pacific equatorial upwelling. The interannual variations of the northern and southern extratropical bands are of similar amplitude, though the attribution to mechanisms is less clear. The interannual variations estimated by the inverse method are larger than those estimated by the current generation of global ocean biogeochemistry models, especially in the North Atlantic, suggesting that the representation of biological processes plays a role. The comparison further suggests that O₂ variability is a more stringent test to validate models than CO₂ variability because the processes driving O₂ variability combine in the same direction and amplify the underlying climatic signal.