Geophysical Research Abstracts, Vol. 10, EGU2008-A-04938, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-04938 EGU General Assembly 2008 © Author(s) 2008

Influence of nitric acid and ammonia on heterogeneous uptake and oxidation of sulfur dioxide on yellow sand particles

K. Sakamoto, T. Kaneko, Y. Horita, Y. Tonegawa, H. Takada, A. Sorimachi, K. Sekiguchi, Q. Wang, H. Ishihara Graduate School of Science and Engineering, Saitama University, Japan

(sakakazu@env.gse.saitama-u.ac.jp / phone: +81-48-858-3519)

In China, large amounts of sulfur dioxide (SO_2) from coal combustion have been emitted with the progression of industrial and economic activities. In addition, since the emissions of ammonia from anthropogenic and natural sources, and nitrogen oxides and hydrocarbons from automobile exhaust and fossil fuel combustion have been increasing, there is the possibility that O_3 and HNO₃ would be produced through photochemical reactions. Taking into account those circumstances, the evaluation of the uptake extent of acidic gases, oxidants, and ammonia to mineral dust particles may provide interesting information about the transport and fate of such gases. There are some laboratory studies about the heterogeneous reactions of air pollutants on Chinese mineral dust particles. Furthermore, these reports showed that coexistent components might importantly contribute to heterogeneous uptake and/or to oxidation of SO_2 . On the other hand, there are a few reports about the possibility that yellow sand particles act as chemical reaction sites in the atmosphere, and as carriers of chemical products, on the basis of chemical analysis of the yellow sand particles during the long-range transport from the source to Japan. Therefore, there is the possibility that air pollutants were attached to yellow sand particles and/or reacted with the particles.

In order to obtain information about influence of moisture, NO_2 , HNO_3 , and NH_3 on heterogeneous reaction of SO_2 on soil particles collected in Lanzhou, China, laboratory experiments were performed in the use of a cylindrical flow reactor. We focused uptake and oxidation of SO₂ in this study. The uptake of SO₂ was estimated by monitoring the concentration of SO₂ continuously. As a result, a high reactivity of SO₂ with Lanzhou soil particles was shown. However, the uptake of SO₂ was controlled in the presence of HNO₃ at < 10% RH, which suggests a rapid acidification of the particle surface by HNO₃ uptake. At 80% RH, the uptake of SO₂ increased significantly in comparison with < 10% RH and had little influence of NO₂ and HNO₃. The sulfur oxidation was discussed by means of oxidation ratio of sulfur (ORS). In the case of coexisting NH₃ with SO₂, NH₃ seemed to promote SO₂ uptake and slightly restrained oxidation of S(VI) only under dry conditions.