Geophysical Research Abstracts, Vol. 10, EGU2008-A-04924, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-04924 EGU General Assembly 2008 © Author(s) 2008

Effects of Sediment Composition on the Rheological Parameters of Mud Slurries

C. Jan (1), J. Wang (1)

(1) Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Taiwan (cdjan@mail.ncku.edu.tw).

The Bingham model is used to describe the rheological properties of viscous sedimentwater mixtures, which contains two rheological parameters: the Bingham yield stress τ_B and Bingham viscosity μ_B . Thirty-one sets of experimental data of mud slurries were collected to analyze the dependence of the rheological parameters of mud slurries on their sediment concentration C_v and sediment composition in the present study. The results showed that the both the rheological parameters τ_B (dyne/cm²) and μ_B (centi-poise) of mud slurries (having sediment seize less than 1 mm) exponentially increases with the increase of C_v , i.e., $\tau_B = A_1 \exp(B_1 C_v)$ and $\mu_B = A_2 \exp(B_2 C_v)$. The coefficients B_1 and B_2 are about 0.20 and 0.18, respectively, with minor variation for the slurry simples collected in this study. However, the values of the coefficients A_1 and A_2 significantly varies with the content of fine sediments, particularly for the size less then 0.02mm. The present study developed the relation of the coefficient A_1 (A_2) and $P_{0.02}$ ($P_{0.01}$), in which $P_{0.01}$ and $P_{0.02}$ denote the content of fine sediment having size less than 0.01 mm and 0.02 mm, respectively. They are $A_1 = 0.0014 \exp(0.095 P_{0.02})$ and $A_2 = 0.03 \exp(0.13 P_{0.01})$. In addition, the effects of gravels on τ_B and μ_B of gravel-mud-slurries were also experimental studied. The gravels used in experiments have diameters (D_a) of 5, 10, 16, and 24 mm, respectively, and the content of gravels (C_{vq}) in the gravel-mud slurries varies from 7% to 20%. The result shows that at the same sediment concentration, the gravel-mud slurry has larger content of fine sediments has higher values of τ_B and μ_B . The dependence of τ_B and μ_B on C_v , C_{vq} and D_q are also evaluated in this study. We can estimate the values of τ_B and μ_B for a gravel-mud mixture, providing the data of C_v , C_{vq} and D_q for the mixture are available.