Geophysical Research Abstracts, Vol. 10, EGU2008-A-04920, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-04920 EGU General Assembly 2008 © Author(s) 2008

Epithermal Neutron Activation Analysis and Radiometric Investigation of Slanic Prahova (Romania) salt mine evaporites

C. Cristache (1), **O.G. Duliu** (2), R. M. Margineanu (1), C.A. Simion (1), M. Matei (3),

(1) National Institute of Research and Development for Physics and Nuclear Engineering "Horia - Hulubei", P.O. Box MG - 6, 077125, Magurele (Ilfov), Romania, (romulus@ifin.nipne.ro), (2) University of Bucharest, Department of Atomic and Nuclear Physics, P.O. Box MG - 11, 077125 Magurele (Ilfov), Romania (duliu@b.astral.ro), SALROM RA, 220, Calea Victoriei, 010099 Bucharest, Romania (sns@salrom.ro)

Epithermal Neutrons Activation Analysis (ENAA) performed at the Joint Institute of Nuclear Researchs – Dubna (Russia) and Natural Radionuclides Gamma-ray Spectroscopy (NRGrS) performed at the National Institute of Research and Development for Physics and Nuclear Engineering – Bucharest (Romania) were used to investigate more samples of pure halite and interbedding sediments collected in the vicinity of the Ultra-Low Background Radiation Laboratory (ULBRL) located in the Slanic Prahova (Romania) salt mine.

Halite samples showed a remarkable purity, ENAA irrespective of its ppm accuracy could evidence, excepting sodium chloride, the presence of only few trace elements such as Ca (21.9 g/kg), Fe (0.33 g/kg), Ti (2.26 g/kg), Al (0.15 g/kg), V (14.9 mg/kg), Mn (61.7 mg/kg), Cu (7.79 mg/kg), Br (1.26 mg/kg) and U (3.53 g/kg). No traces of potassium could be detected.

At the same time, interbedding sediments material whose average concentration, as impurities by respect to salt, is about 1.16 % showed a multielemental composition very close to those of the Upper Continental Crust (UCC), but slightly enriched in Cr, Ni, As and W and a little depleted in V, Cu, Sr, Zr, Ba and Th by respect to it.

Radiometric determinations of 40 K, 226 Ra (descending from 238 U) and 228 Ra (descending from 232 Th) were in concordance with the previous ENAA analysis.

In this way, both ENAA and NRGrS were in good agreement with previous global radioactivity measurements that showed a global reduction of the absorbed dose within the ULBRL of about 75 times by respect to surface conditions.