The complex magnetic phenomenology of the ilmenite-hematite solid-solution series

K. Fabian (1), S. A. McEnroe (1), P. Robinson (1), B. Burton (2)

(1) Geological Survey of Norway, N-7491 Trondheim, Norway, (2) NIST, Gaithersburg, MD 20899, United States

In their importance to rock magnetism, solid solutions in the hematite-ilmenite system, Fe$_2$O$_3$-FeTiO$_3$, are second only to those of magnetite-ulvöspinel, Fe$_3$O$_4$-Fe$_2$TiO$_4$. Naturally occurring $(1-X)$Fe$_2$O$_3$-XFeTiO$_3$ solid solutions exhibit complex magnetic properties owing to exsolution and cation ordering that are presumably induced by slow cooling. Studying the magnetic properties of synthetic single-phase samples can help to elucidate the properties of the more complex natural intergrowths, that exhibit extraordinary magnetic properties, such as lamellar magnetism and large low-temperature exchange bias. The magnetism of FeTiO$_3$-rich solid solutions may be of fundamental importance in interpreting the magnetism of cold dead planets and asteroids, which formed in environments that are more reducing than Earth’s. The low-temperature meta-stable phase diagram of the ilmenite-hematite solid-solution series is known to contain several magnetic transitions and cross-overs. We present new magnetic data to define these boundaries. These comprise Curie temperatures, frequency- and amplitude-dependent susceptibility, magnetic viscosity and hysteresis data. The measurements shed new light on low-temperature spin-glass properties, superparamagnetic behavior of ilmenite-rich solutions, and on internal variations within the ferrimagnetic region between $X \approx 0.4$ and $X \approx 0.87$. Physical models of exchange-coupling networks can be used to understand the observed variations in terms of percolation thresholds or exchange-link clusters. Moreover, clear magnetic differences have been observed between samples of identical composition but varying synthesizing conditions below or above the order-disorder transition.