Geophysical Research Abstracts, Vol. 10, EGU2008-A-04644, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-04644 EGU General Assembly 2008 © Author(s) 2008

Predicting regional hydrological response to climate change using a water-energy coupled balance model based on the Budyko and Bouchet hypotheses

Dawen YANG, Hanbo YANG

Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China (yangdw@tsinghua.edu.cn)

Areal evaporation (E) on the long time scale is primarily controlled by the available energy and water. Thereinto the available energy can be measured by potential evaporation (E_0) , and the available water can be represented by precipitation (P). In other words, E can be expressed as a function of E_0 and P. The function is called waterenergy balance equation, which can be expressed as $E = E_0 P / (P^n + E_0^n)^{1/n}$, with n being a parameter representing the catchment characteristics. Due to the feedback of atmosphere on land surface, E increases as a result of increasing P; and it will lead to a decrease in E_0 according to the complementary relationship between actual and potential evaporation. If we express P, E_0 and E as a point (P, E_0 , E) in the state space, as a result of precipitation changing from P_1 to P_2 , the state changes from an initial state $(P_1, E_{0,1}, E_1)$ to a new state, not being $(P_2, E_{0,1}, E_2)$, but $(P_2, E_{0,2}, E_2)$. In other words, the water-energy balance equation cannot evaluate the change in E because of E_0 having a change. To calculate $(P_2, E_{0,2}, E_2)$, another function is introduced from the complementary relationship (CR) between potential and actual evapotranspiration as $bE + E_0 = (1+b)$ E_w , where b is a constant of proportionality; E_w is the wet environment evapotranspiration, which can be calculated from the net radiation (R_n) by the Priestley-Taylor equation. It can be notable that these two equations have two independent variables (P and R_n , not being interrelated, i.e. $\partial P/\partial R_n = 0$), therefore the two dependent variables (E and E₀) can be resolved. This implies that a relatively stabile state (P, E_0, E) can be reached

in a given catchment under particular radiation and precipitation. Simultaneously, equations $dE = \partial E/\partial P \cdot dP + \partial E/\partial E_0 \cdot dE_0$ (derived from the water-energy balance equation) and $bdE + dE_0 = (1+b) dE_w$ (derived from the CR) lead to the expression $dE = [\partial E/\partial P \cdot dP + (1+b) \partial E/\partial E_0 \cdot dE_W]/(1+b\partial E/\partial E_0)$. The regional response of the hydrologic cycle (dE and dR = dP - dE) to climate changes dE_w (dT and dR_n) and dP can be predicted.