

Linking crustal recycling and osmium isotopes

A.V. Sobolev (1,2), A. W. Hofmann (2), G. Brugmann (2,3), V.G. Batanova (1) and D.V. Kuzmin (2,4)

(1) Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia, (2) Max Planck Institute for Chemistry, Mainz, Germany, (3) Institut für Geowissenschaften, Johannes Gutenberg-Universität Mainz, Germany, (4) Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia (sobolev@geokhi.ru /Fax: +7 495-9382054)

Recycling of subducted oceanic crust is widely thought to explain much of the chemical and isotopic heterogeneity of Earth's present-day mantle [1]. Geochemical tracers of recycled subducted ocean crust have included elevated $^{187}\text{Os}/^{188}\text{Os}$ in some studies [2,3] and high Ni and low Mn contents in others [4,5]. Here we link these tracers for the first time. For Iceland we observe strong positive correlation between amount of reacted recycled oceanic crust (estimated from Mn/Fe ratios of olivine phenocrysts after [5]) and $^{187}\text{Os}/^{188}\text{Os}$ ratio of bulk rocks. This result significantly strengthens the recycling model [1,6]. Furthermore it allows us to estimate the Os isotopic composition of both the recycled crust and the mantle peridotite, thereby constraining the model ages of end-members. We show that Icelandic lavas require ancient crustal component with model ages between 0.6 and 2 Ga and peridotitic end-member close to present-day mantle.

References: [1] A. W. Hofmann, W. M. White, *Earth Planet. Sci. Lett.* 57, 421 (1982); [2] J. C. Lassiter, E. H. Hauri, *Earth and Planetary Science Letters* 164, 483 (1998); [3] A. D. Brandon et al, *Geochimica Et Cosmochimica Acta* 71, 4570 (2007); [4] A. V. Sobolev et al, *Nature* 434, 590 (2005); [5] A. V. Sobolev et al., *Science* 316, 412 (2007); [6] C. Hémond et al., *Journal of Geophysical Research-Solid Earth* 98, 15833 (1993).