

Satellite Remote Sounding of AIRS MidTropospheric CO₂

M. Chahine (1), L. Chen (1), P. Dimotakis (1,2), X. Jiang (1), Q. Li (1), E. Olsen (1), T. Pagano (1), J. Randerson (3), **Y. Yung** (2)
(1) JPL, CA, USA, (2) Caltech, CA, USA, (3) UCI, CA, USA (ly@gps.caltech.edu Fax:+001 626-5851917/ Phone:+001 626-3956940)

With Atmospheric Infrared Sounder (AIRS), we monitor the distribution and transport of global CO₂ on a weekly basis for the first time. There is significant spatio-temporal variability in the middle tropospheric CO₂, which is corroborated by independent *in situ* aircraft observations. The distribution of the middle tropospheric CO₂ appears to be strongly influenced by large-scale circulation such as middle-latitude jet streams and by synoptic weather systems, particularly in summer. Contributions from large stationary surface sources, especially in the Southern Hemisphere, are evident in the AIRS CO₂ data. The stratosphere-troposphere exchange associated with a Northern Hemispheric Stratospheric Sudden Warming (SSW) event in April 2003 resulted in an increase of \sim 2 ppmv in AIRS CO₂ concentrations and a decrease of \sim 20 ppbv in AIRS O₃ at 300 hPa within five days. It is still a challenge for the chemistry and transport models to simulate the CO₂ weather and the sudden warming correctly.