

Geophysical Research Abstracts,
Vol. 10, EGU2008-A-04460, 2008
SRef-ID: 1607-7962/gra/EGU2008-A-04460
EGU General Assembly 2008
© Author(s) 2008

Eddy-driven buoyancy gradients on Eastern boundaries.

P. Cessi and C. L. Wolfe

Scripps Institution of Oceanography - University of California, San Diego

Classical thermocline theories assume that buoyancy gradients vanish on the Eastern boundaries of closed basins, so that the geostrophically balanced flow has vanishing normal component on the boundary. However, eddy-resolving simulations show that there are substantial buoyancy gradients on the subpolar portions of the Eastern boundary, accompanied by an energetic field of mesoscale eddies. Using a simple, semi-analytic model, we show how eddy-buoyancy fluxes can maintain buoyancy gradients on the Eastern boundary. Our consideration of a continuously stratified model allows to derive a scaling for the depth of this boundary gradient. The role of this depth in the overall scaling of the thermocline is also discussed.