Geophysical Research Abstracts, Vol. 10, EGU2008-A-04429, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-04429 EGU General Assembly 2008 © Author(s) 2008

Photochemical enhancement of the reaction between ozone and chlorophyll at the air-water interface

D. Reeser (1), A. Jammoul (2), M. Brigante (2), B. D'Anna (2), C. George (2), **D.J. Donaldson** (1)

(1) Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON CANADA M5S 3H6, (2) CNRS, UMR5256, IRCELYON, Institut de recherches sur la catalyse et l'environnement de Lyon, Villeurbanne, F-69626, France

The kinetics of the heterogeneous reaction between gas-phase ozone and chlorophyll present at the air-water interface are altered in the presence of actinic radiation . Glancing-angle laser-induced fluorescence measurements of the surface concentration of chlorophyll were used to study the kinetics of this reaction, which display a Langmuir-Hinshelwood mechanism under all dark conditions, but in salt solutions of high enough pH there is a large enhancement in the rate and a change to a linear dependence on ozone concentration when the solution is illuminated with actinic light. The wavelength dependence of this enhancement was studied, using a series of long-pass filters. Only when the illumination was restricted to wavelengths above \sim 800 nm did the mechanism revert to that seen in darkness. The excitation spectrum of chlorophyll on the water surface is somewhat different with low vs. high pH substrates; in salt solutions a transient absorption feature is observed upon chlorophyll illumination. These results suggest a strong role for photo-redox surface chemistry in the atmosphere, with bio-organic compounds as sensitizing agents.