Geophysical Research Abstracts, Vol. 10, EGU2008-A-02911, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02911 EGU General Assembly 2008 © Author(s) 2008

Carbon and hydrogen isotope analysis of n-alkanes in aquatic macrophytes and recent lake sediments from the Eastern and Central Tibetan Plateau

B. Aichner (1), U. Herzschuh (1), H. Wilkes (2)

(1) Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany, (2) GeoForschungsZentrum Potsdam, Potsdam, Germany

(Bernhard.Aichner@awi.de / Fax: +49 331 288 2137 / Phone: +49 331 288 2194)

Many lakes from the Eastern and Central Tibetan Plateau are densely populated with aquatic macrophytes. To interpret the variability of $\delta^{13}\text{C}$ - and δD -values of organic components in sediments with high input of aquatic macrophytes, there is a need to understand the possible variabilities in the contributing vegetation. Samples of the dominant submerged aquatic macrophyte species *Potamogeton pectinatus* and *Myriophyllum spicatum* as well as surface sediment samples from various lakes were analysed for n-alkane patterns, bulk $\delta^{13}\text{C}$ -values and $\delta^{13}\text{C}$ and δD of n-alkanes. The results were interpreted in the context of the environmental properties of the respective lakes.

Aquatic macrophytes showed characteristic n-alkane patterns maximising at C_{23} and C_{25} . Similar patterns were also found in the n-alkane composition of most of the sediments. Submerged macrophyte samples showed wide ranges of bulk δ^{13} C-values from -6.0 to -21.8 permil. Wide ranges of carbon isotopic signatures were also determined for the dominant n-alkanes C_{23} and C_{25} in plant samples (-16.6 to -29.5 permil) as well as in most of the corresponding sediment samples (-17.6 to -35.4 permil). The offset between δ^{13} C-values of the bulk plant material and the n-alkanes increased as the bulk material was getting less negative. δ D-values of n-alkanes in plants ranged from -118 to -197 permil. Average δ D-values of n-alkanes in sediments ranged from -147 to -214 permil. Contrary to δ^{13} C-values, δ D-values of n-alkanes were relatively

constant within one sample.

Most of the examined lakes are rather alkaline. This consequently leads to the assimilation of HCO_3^- , resulting in less negative $\delta^{13}C$ -values of bulk plant material and midchain n-alkanes. There is a trend towards less negative values at higher pH. However, a correlation between pH/alkalinity and $\delta^{13}C$ is weak, possibly due to other influences e.g. limited CO_2 availability in the densely populated lakes. No obvious relationship between mean annual precipitation and δD of n-alkanes in sediments and plants has been found.