Geophysical Research Abstracts, Vol. 10, EGU2008-A-02327, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-02327 EGU General Assembly 2008 © Author(s) 2008

Precise measurement of atmospheric helium isotopes

Y. Sano (1), T. Tokutake (1), Y. Furukawa (1) and N. Takahata (1) (1) Ocean Research Institute, University of Tokyo, Tokyo, Japan (ysano@ori.u-tokyo.ac.jp / Fax: +81 3 5351 6824 / Phone: +81 3 5351 6823

Several recent papers have addressed the question of whether the atmospheric ³He/⁴He ratio is decreasing with time. Sano et al. measured the ³He/⁴He ratio of air samples collected over a 10-year period at various sites in Japan and claimed an apparent 1-2% decrease in the ratio. Lupton and Graham reported a slope of $+0.009\pm0.043$ %/year (2σ) for the time rate of atmospheric ³He/⁴He change (TROC) based on the Pacific marine air collected over a 17-year period. Pierson-Wickman et al. measured ³He/⁴He ratios of air trapped in historical metallurgical slag in an attempt to study secular variation of the ratio. Taking into account of data, they proposed a TROC of -0.014 ± 0.007 %/year. Recently Lupton and Evans reported that a TROC could be between -0.0102 and +0.0019 %/year, which corresponds to a 0.3% decrease at the most in the air ³He/⁴He over the past 3 decades. Even though many efforts have been devoted to secular variation of air helium, the change of atmospheric ³He/⁴He ratio with latitude and longitude have not been assessed since the pioneer work of Mamyrin et al. We have developed an analytical system to measure atmospheric ${}^{3}\text{He}/{}^{4}\text{He}$ ratios precisely by using a static vacuum operation mass spectrometer and an ultrahigh-vacuum purification line. Repeated analysis of a sample calibrated against a standard shows the precision of about 0.2% error margin (2σ) . This system has been applied to the evaluation of ³He/⁴He ratio of He Standard of Japan (HESJ), and to the assessment of atmospheric variation of latitude. Observed 3 He/ 4 He ratio of HESJ, 20.405 \pm 0.040 R_{air} (2 σ) agrees well with the value of 20.408±0.044 R_{air} by Lupton and Evans, but is smaller than the recommended value of 20.63±0.10 Rair in a literature. Air samples collected from 45°N to 20°N in the Far East show a slight decrease of ³He/⁴He ratio with latitude. Even though the variation is attributable to an experimental artifact, it may not preclude the possibility that the anthropogenic release of crustal ⁴He

is significant in the high latitude region of the northern hemisphere.