

Geophysical Research Abstracts,
Vol. 10, EGU2008-A-02182, 2008
SRef-ID: 1607-7962/gra/EGU2008-A-02182
EGU General Assembly 2008
© Author(s) 2008

Nonlinear dependence of anomalous ion-acoustic resistivity on electron drift velocity

P. Petkaki and M. P. Freeman

British Antarctic Survey, Cambridge, CB3 0ET (ppe@bas.ac.uk)

Collisionless magnetic reconnection requires the violation of ideal MHD by various kinetic-scale effects. Recent research has highlighted the potential importance of wave-particle interactions by showing that Vlasov simulations of unstable ion-acoustic waves predict an anomalous resistivity that can be significantly higher in the nonlinear regime than the quasi-linear estimate. Here, we investigate the dependence on the initial electron drift velocity of the current driven ion-acoustic instability and its resulting anomalous resistivity. We examine the properties of statistical ensembles of 10 Vlasov simulations with real mass ratio for a range of drift velocities and for electron to ion temperature ratios 0.9, 1 and 2, relevant to both solar and magnetospheric physics. We show that the ion-acoustic anomalous resistivity depends nonlinearly on the electron drift velocity for the low temperature ratios examined.