Geophysical Research Abstracts, Vol. 10, EGU2008-A-01934, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-01934 EGU General Assembly 2008 © Author(s) 2008

Interfacial chemistry of aqueous sulfur/iodide aerosol microdroplets in gaseous ozone

S. Enami, C. D. Vecitis, J. Cheng, A. J. Colussi, and M. R. Hoffmann W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125, USA

The intermediates ISO_3^- (m/z = 207) and $IS_2O_3^-$ (m/z = 239) generated in aqueous (iodide - thiosulfate) microdroplets traversing dilute ozone gas plumes at atmospheric pressure are detected via online electrospray mass spectrometry within 1 ms, and their stabilities gauged by collision-induced dissociation. The simultaneous detection of anionic reactants and the S_2O6^{2-} , HSO_4^- , IO_3^- and I_3^- products as a function of experimental conditions provides evidence of unique interfacial reaction kinetics. Although ozone reacts ~3-4 times faster with I⁻ than $S_2O_3^{2-}$ in bulk solution, only $S_2O_3^{2-}$ is apparently oxidized in $[I^--]_o/[S_2O_3^{2-}]_o = 10$ microdroplets below $[O_3(g)] \sim 50$ ppm. The sulfite to sulfate and iodide to triiodide and iodate oxidations in the interfacial layers of aqueous thiosulfate or mixed thiosulfate and iodide microdroplets briefly exposed to dilute $O_3(g)$ gas mixtures are also investigated. S(IV) oxidation kinetics in sodium thiosulfate solutions, where the rates are proportional to $[S(IV)] [O_3(g)]$ in the ranges investigated, correspond to a surface-specific reaction. I_3^-/IO_3^- yields based on interfacial I⁻ losses exceed their stoichiometric limits in the presence of excess S(IV), revealing that interfacial I⁻.