

Influence of intraseasonal sea surface temperature anomalies on the West African Monsoon

S. Lavender and A. Matthews

School of Environmental Sciences, University of East Anglia (s.lavender@uea.ac.uk)

Convective anomalies over West Africa during the monsoon season are simulated as a response to sea surface temperature (SST) anomalies associated with the Madden-Julian Oscillation (MJO) over the equatorial warm pool region. An atmosphere-only global circulation model is used and forced with SST anomalies based on the dominant mode of convection over the warm pool during the Northern Hemisphere summer. The response is analysed using lagged composites. Positive (negative) SST anomalies have upward (downward) vertical motion and positive (negative) mid-tropospheric temperature anomalies leading to locally enhanced (reduced) convection approximately 3 days later. These mid-tropospheric temperature anomalies propagate eastwards as a Kelvin wave and westwards as a Rossby wave, reaching Africa approximately 10 days later. The positive (negative) temperature anomalies act to stabilise (destabilise) the troposphere resulting in suppressed (enhanced) convection over the Gulf of Guinea, extending over West and Central Africa. Possible mechanisms for the convective responses over Africa as a response to these SST anomalies are investigated.