Geophysical Research Abstracts, Vol. 10, EGU2008-A-01079, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-01079 EGU General Assembly 2008 © Author(s) 2008

First observations of SO_2 above Venus' clouds by means of solar occultation in the infrared

D. A. Belyaev (1), O. I. Korablev (1), A. A. Fedorova (1), J.-L. Bertaux (2), A.-C. Vandaele (3), E. Neefs (3), V. Wilquet (3), A. Mahieux (3)

(1) Space Research Institute (IKI), 84/32 Profsoyuznaya, 117997 Moscow, Russia, (2) Service d'Aéronomie du CNRS, Verrières-le-Buisson, France, (3) Belgian Institute for Space Aeronomy, 3 av. Circulaire, B-1180 Brussels, Belgium, (dbelyaev@iki.rssi.ru / Fax : +7-495-333-44-55)

The experiment SOIR (Solar Occultation in the Infra-Red) – a part of the Venus Express mission – is performed for study of gaseous and aerosol vertical structure in Venus' mesosphere. The instrument of SOIR is an acousto-optical (AO) echelle spectrometer that operates at wavelengths 2.2-4.3 μ m with high spectral resolution $(\lambda/\Delta\lambda \sim 30000)$. The spectrometer is capable to detect important minor gaseous constituents such as CO, SO₂, HCl, HF, H₂O and HDO at altitudes 65-110 km. Here we report results from 6 occultation sessions with observation of 4 μ m SO₂ band at latitudes 69° -88° N and 23° -30° N. It's the first time of SO₂ vertical distribution retrieval above Venus' clouds by means of solar occultation. Since sulfur dioxide spectrum of transmission is measured on a background of abundant CO_2 band around 4 μ m, it is impossible to retrieve any separate SO₂ line for observing and fitting. This fact forces us to do modeling of combined spectrum $(CO_2 * SO_2)$ and to perform fitting with appropriate mixing ratio of SO_2 by comparison between the combined model and a measured spectrum (using least-squares method). As result, just a few points of a SO₂ vertical profile can be detected clearly (~ 0.1 ppm at high latitudes and ~ 1 ppm at low latitudes at the altitude about 70 km). All the rest points provides upper limit of the gas' mixing ratio (<0.05 ppm at 75 km and higher).