Geophysical Research Abstracts, Vol. 10, EGU2008-A-00162, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-00162 EGU General Assembly 2008 © Author(s) 2008

A rapid Transition from ice covered CO_2 -rich Waters to a biologically mediated CO_2 Sink in the eastern Weddell Gyre

D.C.E. Bakker (1), M. Hoppema (2), M. Schröder (2), Walter Geibert (3) and H.J.W. de Baar (4)

(1) School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, U.K., (2) Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, (3) Earth Science, School of Geosciences, University of Edinburgh, U.K., (4) Royal Netherlands Institute for Sea Research, Texel, The Netherlands (D.Bakker@uea.ac.uk / Fax: 0044.1603.591327 / Phone: 0044.1603.592648)

Circumpolar Deep Water (CDW), locally called Warm Deep Water, (WDW), enters the Weddell Gyre in the southeast, roughly at 25-30°E. In December 2002-January 2003 we studied the effect of entrainment of WDW on the fugacity of carbon dioxide (fCO₂) and dissolved inorganic carbon (DIC) in Weddell Sea surface waters. Ultimately the fCO_2 difference across the sea surface drives CO_2 air-sea fluxes. Deep CTD sections and surface transects of fCO₂ were made along the Prime Meridian, a northwest-southeast section, and along 17-23°E during cruise ANT XX/2 on FS Polarstern. Upward movement and entrainment of WDW into the winter mixed layer had significantly increased DIC and fCO₂ below the sea ice along 0° W and 17 to 23°E, notably in the southern Weddell Gyre. Nonetheless, the ice cover largely prevented outgassing of CO₂ to the atmosphere. During and upon melting of the ice, biological activity rapidly reduced surface water fCO₂ by up to 100 μ atm, thus creating a sink for atmospheric CO_2 . Despite the tendency of the surfacing of WDW to cause CO_2 supersaturation, the Weddell Gyre may well be a CO_2 sink on an annual basis due to this effective mechanism involving ice cover and ensuing biological fCO₂ reduction. The CO₂ source tendency deriving from the upward movement of 'pre-industrial' CDW is declining, as atmospheric CO₂ levels continue to increase and thus the CO₂ sink of the Weddell Gyre will continue to increase as well (provided the upward movement of WDW does not change much).