

## Feedback of ambient air $\mathbf{CO}_2$ concentration on soil $\mathbf{CO}_2$ efflux

**D. K. McDermitt,** L. Xu, R. Madsen, T. Demetriades-Shah, R. Garcia and M. Furtaw LI-COR Biosciences, 4421 Superior Street, Lincoln, NE 68504, USA

liukang.xu@licor.com Phone 01-402-467-3576

Soil CO<sub>2</sub> flux ( $F_c$ ) is driven primarily by the CO<sub>2</sub> concentration gradient across the soil surface. We show that under calm and warm night-time conditions, ecosystem respiration can lead to elevated ambient air CO<sub>2</sub> concentration ( $C_a$ ) above the soil, which suppresses  $F_c$ , as expected from diffusion theory. We hypothesize that on warm and calm nights prolonged suppression of  $F_c$  has the effect of capping the soil, and leads to elevated soil CO<sub>2</sub> concentrations ( $C_s$ ). When the atmosphere becomes unstable at sunrise, or when the friction velocity (U\*) increases, this cap is removed by replacing air above the soil that has elevated  $C_a$  with ambient air characteristic of the well-mixed atmosphere. This can occur quite rapidly producing a large gradient between  $C_s$  and  $C_a$ , which leads to enhanced diffusion and elevated  $F_c$ , especially at sunrise. Elevated  $F_c$  can persist for one to two hours, apparently until the soil CO<sub>2</sub> concentration profile readjusts.

We conducted a series of experiments at two field sites with different soil and vegetation types, to investigate the impact of ambient CO<sub>2</sub> concentration on  $F_c$ . We used two kinds of closed chamber systems (LI-6400 and LI-8100) to measure  $F_c$ . The LI-6400 chamber used a draw-down approach and  $F_c$  was estimated when the chamber CO<sub>2</sub> concentration ( $C_c$ ) was near the ambient CO<sub>2</sub> concentration (*Norman, et al., 1992*. *Soil surface CO<sub>2</sub> fluxes and the carbon budget of a grassland. J. Geophys. Res., 97*). The LI-8100 was a fully automated multiplexed system, and  $F_c$  was estimated using the initial slope ( $dC_c/dt|_{t=0}$ ) of a fitted exponential function of  $C_c$  vs time, which we call the exponential approach. Both the draw-down and the exponential approaches were done to minimize the impact of altered CO<sub>2</sub> diffusion gradient inside the chamber on the flux measurements. Comparison of  $F_c$  measurements between these two approaches yielded excellent agreement, suggesting the two approaches were equivalent.

Nearly continuous measurements of night-time  $F_c$  from the two field sites demonstrated that  $F_c$  was negatively correlated with changes in  $C_a$ , suggesting  $F_c$  was suppressed under high  $C_a$  due to the reduced CO<sub>2</sub> diffusion gradient. Also, at sunrise, increased turbulence caused a rapid drop in  $C_a$  and a concomitant increase in  $F_c$  that preceded any increase in soil temperature, and persisted for one to two hours, which was much longer than the time required to bring  $C_a$  to a well-mixed daytime value. We tested the hypothesis that the increased  $F_c$  was due to elevated  $C_s$  by capping the soil using the LI-6400, and allowing the headspace CO<sub>2</sub> concentration to rise to various levels above ambient, whereupon we scrubbed the chamber air quickly back to ambient and measured  $F_c$ . Measured  $F_c$  increased with increasing CO<sub>2</sub> concentration in the headspace prior to measurement, as predicted by a diffusion-based mechanism. Wind-induced pressure pumping was not involved.

This has important implications both for chamber measurements and for ecosystem respiration. Our results suggest that respired  $CO_2$  can accumulate in the soil profile under calm conditions. The accumulated  $CO_2$  in the soil can slowly flush out when  $C_a$  returns to the atmospheric background level as the atmosphere becomes unstable. It probably takes much longer to flush out  $CO_2$  accumulated in the soil profile than to flush out  $CO_2$  accumulated in the plant canopy. This might provide an explanation in addition to U\*-dependent night-time flux, for the abnormally high ecosystem respiration rate at sunrise often observed by the carbon flux community. Flechard, et al., (,2006. Temporal changes in soil pore space CO2 concentration and storage under permanent grassland. Agric. Forest Meterol. in press ) present a similar argument, although they suggest wind-induced pressure pumping as the primary mechanism moving  $CO_2$  out of the soil and into the atmosphere.