Geophysical Research Abstracts, Vol. 9, 10055, 2007

SRef-ID: 1607-7962/gra/EGU2007-A-10055

A furnace extraction system for 40Ar/39Ar geochronology of young basalts

B.S.H. Schneider (1), J.R. Wijbrans (1), K.F. Kuiper (1, 2)

(1) Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Netherlands (2) Faculty of Geosciences, Utrecht University, Netherlands (bjoern.schneider@falw.vu.nl)

Although laser extraction systems are commonly used in 40Ar/39Ar geochronology for dating small amounts of sample, classical resistance furnace systems still have some important advantages: e.g. furnace systems have superior temperature homogeneity throughout the sample and furnace systems can be designed for larger amounts of sample, when compared to laser heating systems. Here we describe a new furnace extraction system linked to a HIDEN triple filter quadrupole mass spectrometer that is capable of measuring the 40Ar/39Ar age of samples in an age range to well below 100 ka. The resistance furnace is a high capacity design fitted with a 30 mm diameter Mo sample tube and liner. Up to 23 samples can be loaded in an all-metal revolving sample holder that is separated from the furnace by an in-line valve. Sample purification is achieved with a metal cold trap as a first step and up to three stages of gettering in a dedicated purification section. Furthermore two getter tubes are fitted on the mass spectrometer housing. The mass spectrometer is a 9 mm filter rod triple filter instrument fitted with an open electron bombardment source and a dual Faraday - Channeltron pulse counting electron multiplier collector. Peak separation between m/e:40 and m/e:39 is excellent, and peak tops have a stable reproducible shape, allowing up to 7 readings to be taken at 0.05 mass unit intervals. An initial project on samples from Etna volcano in Silicy demonstrates that results are of comparable quality as samples measured with a more conventional CO2 laser - sector noble gas mass spectrometer system.