Geophysical Research Abstracts, Vol. 9, 09925, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-09925 © European Geosciences Union 2007

In situ cosmogenic ³⁶Cl chemistry on silicates from basaltic flows of Mount Etna (Sicily 38N)

I. Schimmelpfennig (1), L. Benedetti (1), R. Pik (2), P. Burnard (2) and P.H. Blard (3)

(1) CEREGE, UMR 6635 CNRS, Université Aix-Marseille III, Aix en Provence, France, (2) CRPG, UPR 2300 CNRS, Vandoeuvre-lès-Nancy, France, (3) CALTECH, Pasadena, CA 91125, USA (schimmel@cerege.fr /Fax +33 442971595 / Phone +33 442971537)

One of the CRONUS-EU goals is to provide high quality calibration sites from independently dated surfaces. Several previous studies have been conducted on ³⁶Cl production rate calibration (e.g. Zreda et al. 1991, Stone et al. 1996, Phillips et al. 2001), which, however, used different protocols and yielded ³⁶Cl production rates with about 40% discrepancy. The objectives of this study are 1- to understand the source of this discrepancy and 2- to calibrate ³⁶Cl production rates from its most abundant target elements ⁴⁹Ca, ³⁹K and ³⁵Cl. As a first step we focus on testing the chemical protocols. Cosmic rays produce about 10 times more ³⁶Cl in the atmosphere than in a Ca rich mineral. A preliminary cleaning procedure is therefore necessary to remove any meteoric Cl contamination that might be bound to the grain surface. We carried out leaching and dissolution experiments on crushed whole rock samples and Ca rich feldspar minerals from Mt. Etna. Mount Etna (Sicily 38°N) provides an excellent calibration site because 1- this volcano has not been affected by major altitudinal changes since the flows emplacement, 2- its lavas are suited for K-Ar dating, and 3- the pahoehoe features of its flows allow the negligible erosion condition to be checked.

The samples, sieved to different grain size fractions between 140 and 1000 μ m, were first leached in hot dilute HNO₃, then stepwisely dissolved in 3 to 6 stages by limited quantities of a HF/ HNO₃ mixture. After each step, the dissolved sample was collected for AgCl precipitation while the residual solid was rinsed, dried and weighed. ³⁶Cl and Cl_{total} concentrations were determined by isotope dilution mass spectrometry at LLNL. Concentrations of the target elements Ca, K, Fe and Ti were determined by ICP-OES for each leaching and dissolution step to monitor the target element release

in the solutions.

Both Cl and ³⁶Cl concentrations from the first dissolution steps are high, 4000 – 1200 ppm and 10⁷ - 10⁶ at/gram of rock dissolved, respectively. After about 20% dissolution of the feldspar samples, concentrations decrease until reaching plateau values (20-30 ppm for Cl and 10⁴-10³ at/gram of rock for ³⁶Cl). Using the Phillips et al. (2001) ³⁶Cl production rate for the Ca rich feldspar, this plateau concentration yields an exposure age which is in agreement, within uncertainty, both with K-Ar dating and cosmogenic ³He ages (Blard et al. 2005). This result suggests the proposed leaching procedure is effective to remove the meteoric chloride contamination from the feldspar minerals. On the contrary, the whole rock samples concentrations decrease gradually never reaching plateau values suggesting the method is not suited for whole rocks ³⁶Cl decontamination. Future ³⁶Cl measurements should thus be preferentially performed on pure separated feldspar minerals.

References: P.H. Blard et al., EPSL, **236** (2005) 613-631; M.G. Zreda et al., EPSL, **105** (1991) 94-109; J.O. Stone et al., Geochim. Cosmochim. Acta, **60** (1996) 679-692; F.M. Phillips et al., Chem. Geol. **175** (2001) 689-701