

3D-Finite-Volume groundwater and heat-transport modeling with non-orthogonal grids, using a coordinate transformation method

W. Rühaak (1), V. Rath (2), A. Wolf (2,3) and C. Clauser (2)

(1) Leibniz Institute for Applied Geosciences (GGA Institute) Hanover, (2) Applied Geophysics, RWTH Aachen University, (3) Scientific Computing, RWTH Aachen University

Many popular groundwater modeling codes are based on the finite-differences or finite-volume method for orthogonal grids. In cases of complex subsurface geometries this type of grid either leads to coarse geometric representations or to extremely fine meshes. We use a coordinate transformation method to circumvent this shortcoming. In computational fluid dynamics, this method has been applied successfully to the general Navier-Stokes equation. The method is based on tensor analysis and performs a transformation of a curvilinear into a rectangular unit grid, on which a modified formulation of the differential equations is applied. Therefore it is not necessary to reformulate the code in total. We applied the coordinate transformation method to an existing three-dimensional code (SHEMAT), a simulator for heat conduction and advection in porous media. The finite-volume discretization scheme for the non-orthogonal, hexahedral grid yields to a 19-point stencil and a correspondingly banded system matrix. The implementation is straightforward and it is possible to use some existing routines without modification. The accuracy of the modified code was demonstrated on a two-dimensional analytical solution for flow and heat transport and further on with a thermal free-convection benchmark.