Geophysical Research Abstracts, Vol. 9, 08728, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-08728 © European Geosciences Union 2007

Characterization of active normal faulting using LiDAR-derived DTM and modeling of flood damages in the Jinshan area, northern Taiwan

Chen, R.F. (1), Chan, Y.C. (1), Chang, K.J. (1), Lee, J.C. (1), Hsieh, Y.C. (2)

(1) Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan, R.O.C., (2) Central Geological Survey. MOEA, Taiwan, R.O.C., (roufei@earth.sinica.edu.tw / Phone: +886-2-27839910 ext 412)

River morphology is commonly used to evaluate tectonic activities because they respond sensitively to the tilting of the ground. In the past decade, digital terrain models (DTM) have been used intensively for observing and mapping landforms and structures because of its power for displaying spatial relations in active structures. However, more precise and higher resolution DTMs are needed to improve our understanding of minor ground changes induced by single faulting events. Since 2005, airborne LiDAR mapping is carried out and provided high resolution DTM with accuracy ~ 15 cm in northern Taiwan. Historical records show that severe earthquakes may have triggered significant surface ruptures and caused flood damage around the Jinshan delta area. Our work applies the newly LiDAR-derived DTM to pinpoint the locations of active faulting which is not well observed and documented in the study area. Based on the analysis of river profiles, locations of normal faulting with 3 m offset were recognized in the northwestern side of the Jinshan delta area. The overall river pattern also displays a left-lateral strike-slip component in addition to the normal slip component. The DTM analysis and field observations indicate that the normal fault system is possibly active due to the well preserved fault scarp in the highly erosional environment on Taiwan. Considering such normal faulting event may occur in the future, we thus model possible earthquake induced flooding effects for the Jinshan delta area. Flooding areas can be determined by the LiDAR topography in conjunction with high resolution digital aerial photographs. Finally, a subsidence modeling due to normal faulting demonstrates how topographic information produced by the LiDAR technique can be accurately used for predicting future flooding hazards.