Geophysical Research Abstracts, Vol. 9, 08126, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-08126 © European Geosciences Union 2007

Analysis of the southern hemispheric H_2 Cycle using D/H measurements of H_2 and CH_4 in Cape Grim air archive

T. S. Rhee(1,4), C. A. M. Brenninkmeijer(1), M. Braß(2), T. Röckmann(2), R. Langenfelds(3), P. Steele(3), and P. Fraser(3)

(1) Max Planck Institute for Chemistry, Mainz, Germany, (2) Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht, The Netherlands, (3) CSIRO Marine and Atmospheric Research, Aspendale, Australia, (4) Now at Korea Polar Research Institute, Ansan, Korea (rhee@kopri.re.kr)

Understanding the hydrogen cycle has gained additional importance because of the acknowledgement of the potential role of hydrogen as a major energy carrier in the future. We investigate the southern hemispheric H₂ cycle using D/H stable isotope analyses of H_2 and CH_4 in 29 samples of air collected from 1992 and 2004 at the Australian Cape Grim baseline air monitoring station and stored in the unique air archive in Aspendale. The D/H ratios were determined using the fairly new technique of continuous-flow isotope ratio mass spectrometry. Quality control tests for the mixing ratios and isotope ratios of H2 in archived air confirm the absence of artifacts that could occur during the collection and subsequent storage. A harmonic-polynomial function was applied to isolate seasonal variation and long term trends during the period of observation. Mean seasonal variations of the D/H ratio of H₂ reveal a similar inphase variation as observed in the southern hemispheric free troposphere (CARIBIC flights). The long-term trends for the mixing ratios and the D/H ratios of H_2 and CH_4 show a remarkable feature of the SH H_2 cycle, namely, the rate of increase of CH_4 is about 3.8 times faster than that of H₂, whereas the D/H ratio of CH₄ increases about 1.8 times slower than that for H₂. This paradox cannot be explained by the photochemical oxidation of CH_4 and H_2 in the southern hemisphere as the major process for these long-term trends. We suspect a strong external influences acting like source or sink for H₂ in the form of inter-hemispheric exchange of air masses.