Geophysical Research Abstracts, Vol. 9, 08085, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-08085 © European Geosciences Union 2007

The MIF-S Record of Sedimentary Rocks: An Indicator of Atmospheric, Thermal, or Biological Evolution of the Earth?

Hiroshi Ohmoto and Yumiko Watanabe

NASA Astrobiology Institute and Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA (ohmoto@psu.edu, yumiko@geosc.psu.edu)

The presence of mass-independently-fractionated sulfur isotopes (MIF-S) in pre-2.4 Ga sedimentary rocks, but the general absence of MIF-S in post-2.4 Ga sedimentary rocks, has been used by many recent investigators as the most conclusive evidence for the Great Oxidation Event \sim 2.4 Ga. This is because the only known mechanism to generate MIF-S signatures in nature has been the dissociation of volcanic SO₂ gas to S^0 and SO_4^{2-} in the atmosphere by UV, and the UV photolysis of SO_2 is prevented when an ozone shield exists and the atmospheric pO_2 is $>10^{-6}$ atm (or $>10^{-3}$ atm). However, this simple interpretation that links MIF-S to a simple atmospheric evolution model has been seriously questioned by recent discoveries of: (1) the absence of MIF-S signatures in many Archean sedimentary rocks between 3.46 Ga and 2.7 Ga in age (Watanabe et al., 2005; Peters et al., 2005; Ohmoto et al., 2006; Ono et al., 2006; Moizsis, 2006); (2) the presence of small, but distinct MIF signatures in recent volcanic ashes (Savariano et al., 2003) and in diagenetic pyrites in a Jurassic ammonite (Ono et al., 2006); (3) the serious discrepancy between the MIF-S signatures in laboratory photochemical reaction products and those in natural samples (Ohmoto et al., 2006); (4) the presence of abnormal geochemical characteristics (e.g., very high organic C contents; submarine hydrothermal signatures) in sedimentary rocks with MIF-S signatures (Ohmoto et al., 2006); and (5) the presence of distinct MIF-S signatures (Δ^{33} S values up to +0.6%.) in the H₂S generated from thermochemical sulfate reduction by amino acids at 150°C, and the general trend of increasing Δ^{33} S values with decreasing rates of sulfate reduction (Watanabe et al., 2006).

Considering these recent discoveries, we present the following three interpretations

for the MIF-S record of sedimentary rocks: (1) the atmospheric O₂ level greatly fluctuated (i.e., "yo-yo atmosphere") during the Archean era: anoxic before \sim 3.5 Ga; oxic during most of the following \sim 800 Ma period (\sim 3.5-2.7 Ga); and anoxic during the next \sim 200 Ma period (\sim 2.7-2.5 Ga); (2) the atmosphere has remained oxic since \sim 3.8 Ga, and large MIF-S signatures represent times and regions of violent volcanic eruptions that ejected large volumes of SO₂ to the stratosphere; and (3) the atmosphere has remained oxic since \sim 3.8 Ga, and the large MIF-S signatures were created by thermochemical sulfate reduction in environments where unusually high accumulations of organic matter and extensive hydrothermal activities occurred.