Geophysical Research Abstracts, Vol. 9, 07579, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-07579

© European Geosciences Union 2007

The evolution of oxygenesis in the Archaean

E.G. Nisbet and N.V. Grassineau

Department of Geology, Royal Holloway, University of London, UK (e.nisbet@gl.rhul.ac.uk)

The evolutionary history of oxygenesis is controversial. For most of the Archaean the sedimentary record shows that liquid water was present, implying a strong greenhouse effect. There may be two stable states in which the biosphere flourishes. If the atmosphere is anoxic, CH_4 and CO_2 , plus water vapour feedback, can support liquid oceans. However, in oxygen-rich air, only trace CH_4 can exist and warmth depends on CO_2 . The transition from anoxic to oxic states is likely to lead to glaciation, with productive photosynthetic oxygenesis destroying CH_4 and drawing down CO_2 .

C and S isotopic evidence from the ~ 2.7 Ga Belingwe belt, Zimbabwe, together with other evidence, imply that the reef-building autotrophs were aerobic oxygenic photosynthesisers (cyanobacteria) using Form I Rubisco. Anaerobic methanogens (Rubisco III) were also present, in muds. Similar results come from > 2.83 Ga stromatolites from Steep Rock (Canada), Mushandike, (Zimbabwe), as well as published work on Pongola (S.Africa). There is also evidence for 2.9 Ga glaciation. This suggests Rubisco I organisms first appeared > 2.83 Ga ago, and were abundant at 2.7-2.65 Ga ago. Prior to this, the absence of carbonate reefs may mean atmospheric CO_2 was too high to permit precipitation except in special local environments (e.g. hydrothermal systems).

The atmospheric $CO_2:O_2$ ratio, and hence greenhouse warming, is linked to Rubisco I's specificity for CO_2 over O_2 and compensation limits. If CO_2 is too low, autotrophy fails; if O_2 is too high, respiration dominates. Rubisco compensation constraints may explain the paradox that, despite the supposed evolution of oxygenesis as early as 2.9 Ga ago, the $\Delta^{33}S$ record is chaotic, in a system that may have oscillated between anoxic and oxic states. Only when very high CO_2 levels built up during the 2.3 Ga snowball-Earth event may it have been possible for the atmosphere to move permanently to a warm O_2 -rich system, limited by compensation barriers and Rubisco I specificity.