Geophysical Research Abstracts, Vol. 9, 06650, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-06650 © European Geosciences Union 2007

Analysis and modelling of SPICAM data onboard Mars Express

C. Simon (1), O. Witasse (1), F. Leblanc (2,3), J. Lilensten (4), J. Mouginot (4), W. Kofman (4), J.-L. Bertaux (2,3).

(1) European Space Agency, RSSD-ESTEC (Noordwijk, The Netherlands), (2) Université de Versailles Saint Quentin, Service d'Aéronomie (Verrières-le-Buisson, France), (3) Université Pierre et Marie Curie-Paris 6 (UMR, Paris, France), (4) Laboratoire de Planétologie de Grenoble (LPG UJF/CNRS, France)

For more than three years SPICAM UV spectrometer onboard ESA mission Mars Express has been successfully monitoring the upper atmosphere of Mars in the range 118-320 nm. We will present the preliminary results concerning the numerical modelling of Mars' dayglow through the computation of UV emission lines such as CO Cameron bands and N_2 Vegard-Kaplan bands. The theory underlying this modelling uses Boltzmann's statistical kinetic and fluid approaches to yield electron/ion density and temperature profiles as a function of altitude as well as observable variables like the volume emission rates. The outputs of the model can be directly compared to the processed SPICAM data. A few characteristic orbits are then chosen for analysis in order to compare with the numerical modelling.