FOSMEX: A remote sensing forest soil moisture experiment using microwave radiometers

M. Guglielmetti (1), M. Schwank (1), C. Mätzler (2), C. Oberdoerster (3), J. Vanderborght (3), and H. Flühler (1)

(1) Institute of Terrestrial Ecosystems, ETH Zurich, Universitätstr. 16, 8092 Zürich, Switzerland, (mike.schwank@env.ethz.ch); (2) Institute of Applied Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland; (3) Agrosphere, ICG-IV, Forschungszentrum Jülich, D-52425 Jülich, Germany

The ground based microwave FOrest Soil Moisture EXperiment (FOSMEX) was performed above a deciduous forest at the Research Center in Jülich (Germany). The data-set recorded during the one-year lasting campaign consists of dual- and single-polarized L-band and X-band measurements with a time-resolution of two hours. Ground-truth forest-soil moistures, temperatures, and meteorological data were measured simultaneously for comparison with remotely sensed data. A non-scattering radiative transfer approach and a coherent model for estimating forest-ground reflectivities were used for linking remotely sensed with ground-truth data. Sensitivities of L-band brightness temperatures with respect to forest soil moistures were modeled for different conditions of a leaf-layer on the ground. After giving a general overview of the experiment and of the entire data-set, we present a sub-experiment where the forest ground was masked with a metallized foil and a sub-experiment where the ground was artificially irrigated. On the one hand this enabled estimating the L-band transmissivity Γ of the canopy at different seasonal states and on the other hand the effect of wetting the ground on the L-band brightness was examined. The experimentally based transmissivity was in the order of 0.45 rather independent of the forest foliation. Sprinkling the ground affected the L-band measurements only for a short time until the water drained through the leaf-layer. This observation corroborates the modeled dominating role of the leaf-layer moisture on the ground reflectivity. This data-base is highly valuable for testing and improving radiative transfer models used for interpreting microwave data received from future space born L-band radiometers flying over
areas comprising a considerable fraction of deciduous forest.