Geophysical Research Abstracts, Vol. 9, 05950, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-05950 © European Geosciences Union 2007

Characterization of rainwater and determination of wet scavenging ratio

Ranjit Kumar1, Abha Gupta2, S.S. Srivastava2, and K. Maharaj Kumari2

1Department of Applied Sciences, Anand Engineering College, Keetham, Agra -7 (INDIA). Tel+Fax: +91-5613-272027. Email: rkschem@rediffmal.com

2Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra-5 (India). E-mail: maharajkumari.k@rediifmail.com.

Precipitation is an efficient pathway for removing the gases and particles from the atmosphere. It also plays a significant role in controlling the concentration of these species. Particles play important role in cloud condensation and formation of precipitation. Incorporation of S and N oxides in wet deposition is particularly important as they are the precursors of major acids (H₂SO₄and HNO₃). Present study deals with chemical constituents of rainwater and their scavenging ratio over Rampur, a rural site in India. The concentration of NH₄⁺ was highest in rainwater followed by Ca²⁺ > Cl⁻ > SO₄²⁻ > Mg²⁺ > Na⁺ > NO₃⁻ > K⁺. The alkaline components Na⁺, K⁺, Ca²⁺ and Mg²⁺ contribute 36.4%, NH₄⁺ 21.3 % whereas acidic components F⁻, Cl⁻, NO₃⁻ and SO₄²⁻ contribute 42.3%. The difference between sum of cations (NH₄⁺, Na⁺, K⁺, Ca²⁺ and Mg²⁺) and sum of anions (F⁻, Cl⁻, NO₃⁻ and SO₄²⁻) is 46.9 µeq L⁻¹. The scavenging ratio (defined as the ratio of the concentration of a species in rain to that in aerosols) was highest for Mg²⁺ followed by NO₃⁻, Ca²⁺, NH₄⁺, SO₄²⁻, Na⁺ and K⁺.