Geophysical Research Abstracts, Vol. 9, 05060, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-05060 © European Geosciences Union 2007

Kinetics of isotope exchange between ozone and CO_2 and production of the ${}^{17}O$ anomaly in CO_2

A. Cole (1) and **K. Boering** (1,2)

(1) Department of Chemistry, University of California, Berkeley, CA, USA, (2) Department of Earth and Planetary Science, University of California, Berkeley, CA, USA (boering@berkeley.edu)

We present results from direct laboratory measurements of the triple oxygen isotopic composition of CO₂ irradiated in CO₂-O₂ mixtures at pressures and CO₂:O₂ ratios similar to those in the stratosphere (67-133 hPa, CO₂/O₂=0.0021). The measured ¹⁷O anomaly in CO₂ is accurately reproduced by a complete kinetics model in which the relative rate coefficients for ozone formation derived from experiments of Mauersberger and co-workers and the O+O₂ isotope exchange rates calculated from statistical thermodynamics are the only isotope effects included. The combined measurement and model results provide clear evidence that the ¹⁷O anomaly in CO₂ is due to statistical or near-statistical isotope effects in O₃ photolysis or in the CO₂+O(¹D) isotope exchange reaction. The model slightly overpredicts δ^{18} O and δ^{17} O, which may be due to small errors in the O₃ formation rate coefficients or their pressure or temperature dependence or to mass-dependent isotope effects in other reactions such as CO₂+O(¹D). Implications of these results for stratospheric CO₂ are explored through further kinetics modeling.