Geophysical Research Abstracts, Vol. 9, 04471, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-04471 © European Geosciences Union 2007

Influence of stability on the turbulent Prandtl number in the stable atmospheric boundary layer

A. Grachev (1,2), E. Andreas (3), C. Fairall (2), P. Guest (4) and O. Persson (1,2)

(1) Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder CO, USA, (2) NOAA Earth System Research Laboratory, Boulder CO, USA, (3) NorthWest Research Associates, Inc., Bellevue Division, Lebanon, NH, USA, (4) Naval Postgraduate School, Monterey CA, USA (Andrey.Grachev@noaa.gov / Fax: (303) 497 6181)

The turbulent Prandtl number, Pr_t , is an important characteristic of momentum and heat flux mixing in calibration of turbulence models and other applications. In spite of progress in the understanding of the stable boundary layer (SBL) physics, a unified picture on the stability dependence of Pr_t does not exist. Measurements of atmospheric turbulence made during the Surface Heat Budget of the Arctic Ocean Experiment (SHEBA) are used to examine Pr_t in the stably stratified boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological data were continuously measured and reported hourly at five levels on a 20-m main tower for 11 months during 1997-1998. The comprehensive data set collected during SHEBA allows studying Prt in detail, including the very stable case. It is found that Prt increases with increasing stability if Pr_t is plotted versus gradient Richardson number, Ri but at the same time Pr_t decreases with increasing stability if Pr_t is plotted versus flux Richardson number, Rf, or versus z/L. This paradoxical behaviour of the turbulent Prandtl number in the SBL derives from the fact that plots of Pr_t versus Ri (as well as versus Rf and z/L for individual 1-hr observations and conventional bin-averaged values of the individual quantities have built-in correlation (or self-correlation) because of the shared variables. For independent estimates of how Prt behaves in very stable stratification, Pr_t is best plotted against the *bulk* Richardson number. Plots of Pr_t versus the bulk Richardson number (which have no built-in correlation) for the SHEBA data show that on average Pr_t decreases with increasing stability and Pr_t < 1 in the very stable cases.