Geophysical Research Abstracts, Vol. 9, 04431, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-04431 © European Geosciences Union 2007

Evaluation of cosmogenic ³He and ²¹Ne concentrations in an olivine-rich Pleistocene basalt flow, western Grand Canyon National Park, Arizona, USA

C.R. Fenton (1), S. Niedermann (1), M. Goethals (1,2), B. Schneider (3)

(1) GeoForschungsZentrum Potsdam, Germany, (2) Westfälische Wilhelms-Universität Münster, Germany, (3) Vrije Universiteit Amsterdam, The Netherlands

(crfenton@gfz-potsdam.de)

The Bar Ten lava flow is a Pleistocene basalt flow located in the western margin of the Uinkaret Volcanic Field in Grand Canyon National Park (AZ, USA). It was chosen as a calibration site for the production of cosmogenic ³He and ²¹Ne (³He_c and ²¹Ne_c) to investigate the reliability of different methods of scaling production rates for altitude and latitude. The lava flow erupted between 80 and 140 ka based on a previously reported ³He_c age (88 \pm 6 ka) and a thermoluminescence (TL) age of 108 \pm 29 ka. The presence of excess Ar and abundant glass in this basalt flow made it difficult to obtain a reliable 40 Ar/ 39 Ar age; there is one reported age of 190 ± 390 ka. Now, two samples yield preliminary ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ ages of 80 ± 25 and 117 ± 32 ka. In this study, cosmogenic samples were collected from stable, primary surfaces at elevations from 1180 to 1820 m along a vertical transect between 36.2239 to 36.2417° N. He, Ne, and Ar were analyzed by stepwise heating of olivines and ${}^{3}\text{He}_{c}$ and ${}^{21}\text{Ne}_{c}$ components have been determined. Initial results show that ${}^{3}\text{He}_{c}$ in olivine of new samples is higher than ³He_c concentrations in samples from the earlier study. Samples collected in the earlier study may have experienced more erosion. We also evaluated ²¹Ne_c /³He_c values, hypothesizing that eruption age and erosion should have no effect on the ratio, if ${}^{3}\text{He}_{c}$ and ${}^{21}\text{Ne}_{c}$ are produced at constant rates relative to each other. ${}^{21}\text{Ne}_{c}$ / ${}^{3}\text{He}_{c}$ varies from 0.17 to 0.31 in these olivine and may be due to differences in mineralogy. Production rates and scaling methods produce cosmogenic ages that are bracketed by the ⁴⁰Ar/³⁹Ar and TL ages. Samples will be analyzed for chemical composition and evaluated using different scaling factors and production rates.