Geophysical Research Abstracts, Vol. 9, 03179, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-03179 © European Geosciences Union 2007

Evaluating ecosystem respiration in a Japanese temperate cypress forest

S. Ohkubo (1), Y. Kosugi (1), S. Takanashi (2), T. Mitani (3), M. Tani (1)

(1) Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan, (2) Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan, (3) Forestry Agency Japan, Tokyo 100-8952, Japan.

(shinjiro@kais.kyoto-u.ac.jp / Phone: +81-75-753-6149)

Underestimation of nocturnal CO_2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed soil, and trunk and foliar respiration in addition to CO_2 flux above the canopy (F_c) , changes in CO₂ storage in the canopy (S_t) and for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (F_s , F_t , F_f , respectively) and used the relationships of F_s , F_t , and F_f with air or soil temperature for comparison with canopy-scale CO_2 exchange measurements (= $F_c + S_t$). F_s was smaller than in the dry period than in other periods. F_t and F_f were greater during the growing season (1 May-15 July) than during the non-growing season. The annual average F_s , F_t , and F_f were 714 g C m⁻² year⁻¹, 170 g C m⁻² year⁻¹, and 575 g C m⁻² year⁻¹, respectively. At small friction velocity (u_*) , $F_s + F_t + F_f$ estimated using the chamber method was larger than nocturnal $F_c + S_t$, whereas the two values were almost the same at large u_* . When we replaced all nocturnal $F_c + S_t$ data with $F_s + F_t + F_f$ estimated using the chamber method, NEE changed from -713 to -506 and from -883 to -682 g C m⁻² year⁻¹ for 2003 and 2004, respectively.