Geophysical Research Abstracts, Vol. 9, 03044, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-03044 © European Geosciences Union 2007



## Ammonium versus Nitrate Nutrition of Zea mays and Lupinus albus:

## Effect on root-derived CO<sub>2</sub> Efflux

O. Gavrichkova (1), Y. Kuzyakov (2) and R. Valentini (1)

(1) Department of Forest Environment and Resources, University of Tuscia, 01100, Viterbo, Italy (2) Department of Agroecosystem Research, University of Bayreuth, 95440, Bayreuth, Germany (<u>olchik@unitus.it</u> / Phone: +390761357251)

Nitrogen assimilation is among the most energy-intensive processes in plants, requiring the transfer of two electrons per  $NO_3^-$  converted to  $NO_2^-$ , six electrons per  $NO_2^-$  converted to  $NH_4^+$ , and two electrons and one ATP per  $NH_4^+$  converted to glutamate. Depending on the species,  $NO_3^-$  could be reduced both, in shoots and roots of plants. In illuminated shoots nitrate reduction is fed exclusively by reducing equivalents coming directly from photosynthetic processes. However, in roots and during darkness, reducing equivalents are generated by oxidation of carbohydrates, resulting in additional  $CO_2$  release from roots of plants growing with nitrate. We hypothesized that feeding plants with  $NH_4^+$  will reduce root-derived  $CO_2$  efflux from soil compared to the plants fertilezed with  $NO_3^-$ .

Two species were chosen: Zea may, which reduces half of  $NO_3^-$  in shoots and half in roots and Lupinus albus, reducing the major part of  $NO3^-$  in roots. Two nitrogen treatments were applied: each species grown on nitrate and ammonium fertilizer. Nitrification inhibitor was used to prevent microbial conversion of  $NH_4^+$  to  $NO3^-$  in soil. Pulse labeling of plants in <sup>14</sup>CO<sub>2</sub> atmosphere was applied to quantify the effect of both fertilizers on recently (<sup>14</sup>C) and total assimilated C. Total CO<sub>2</sub> and <sup>14</sup>CO<sub>2</sub> was continuously monitored one week after the pulse labeling. It was shown that fertilized with  $NO_3^-$  however, the effect was species depending. Recently assimilated C (<sup>14</sup>C) in CO<sub>2</sub> efflux was more strongly affected by the type of N fertilization compared to the total CO<sub>2</sub>.