Geophysical Research Abstracts, Vol. 9, 02527, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-02527 © European Geosciences Union 2007

Field and laboratory study on atmospheric δ^{13} C-CO₂ using FTIR spectroscopy

J. Mohn (1), M. J. Zeeman (2) and L. Emmenegger (1)

(1) Laboratory for Air Pollution / Environmental Technology, Empa, Switzerland, (2) Institute of Plant Sciences, ETH Zurich, Switzerland

The ${}^{13}C/{}^{12}C$ ratio of atmospheric CO₂ ($\delta^{13}C$ -CO₂) is a powerful tool to quantify CO_2 flux strength of different ecosystem compartments. To date, the majority of CO_2 isotope studies have required air sample collection at remote locations, followed by laboratory analysis with isotope ratio mass spectrometry (IRMS), which limits the number and frequency of measurements [1]. In our study we demonstrate the utility of Fourier transform infrared spectroscopy (FTIR) for online analysis of δ^{13} C-CO₂ in ambient air. Quantification relies on a novel calibration strategy based on a robust partial least squares (PLS) algorithm in combination with a set of multi-component standard spectra [2]. Furthermore, the instrumental set-up has significantly been improved to stabilize gas temperature and pressure. Thus in the laboratory we achieved an average accuracy for δ^{13} C-CO₂ of 0.4 per mil and a precision of 0.15 per mil. The ability of the instrument to measure δ^{13} C-CO₂ was tested outdoors in a grassland and compared to standard laboratory-based MS measurements made on field-collected flask samples. The average difference for δ^{13} C-CO₂ between FTIR and IRMS after removal of two outliers was 0.5 per mil (n = 83). A very good agreement was found for the carbon isotope content of respired CO₂ ($\delta^{13}C_{R}$) determined by either FTIR spectroscopy or IRMS. Besides δ_{13} C-CO₂ and CO₂, other important trace gases, such as CO, N₂O and CH₄ were analyzed by FTIR with high accuracy and precision.

[1] E. Kerstel, in P. de Groot (Eds.), Handbook of Stable Isotope Analytical Techniques, Vol. I, Elsevier, Amsterdam, 2004, chapter 34.

[2] J. Mohn, R. A. Werner, B. B. and L. Emmenegger, J. Mol. Struct., (accepted) (2007).