

Effect of nuclear spin on oxygen isotopic exchange between \mathbf{CO}_2 and $\mathbf{O}(^1\mathbf{D})$

Antra Pandey (1), S. K. Bhattacharya (1) and S. Chakraborty (2)

1. Physical Research Laboratory, Ahmedabad, India (2) University of California, San Diego, California, U. S. A.

antra@prl.res.in, bhatta@prl.res.in

The stratospheric CO_2 is anomalously enriched in heavy oxygen isotopes compared to the tropospheric CO_2 . Several measurements have established the enrichment firmly and showed that the enrichment in 17 O is greater than that of 18 O by a factor of 1.2 to 2.1. It is also seen that the enrichment in ¹⁸O and ¹⁷O increases with increase in altitude while the value of the slope relating two enrichments ($\Delta(\delta^{17}O)$ vs. $\Delta(\delta^{18}O)$) decreases. It is proposed that the enrichment in CO₂ is due to an isotope exchange reaction between CO_2 and $O(^1D)$, the latter being produced by UV dissociation of ozone. It is well known that the stratospheric ozone is unusually enriched in heavy oxygen isotopes (70 to130 %, in ¹⁷O and¹⁸O) relative to the ambient oxygen from which it is produced. As $O(^{1}D)$ is derived from ozone it also possesses this anomalous enrichment and transfers its heaviness to CO_2 during its interaction. However, it is not clear how ozone with slope ~ 1 transfers its heavy oxygen isotopes to CO₂ to make the slope greater than 1. The molecular level detail of the heavy oxygen isotope transfer from ozone to CO_2 is still lacking and we do not know if the $O(^1D)$ - CO_2 exchange process is a simple transfer of the isotope anomaly from ozone to CO_2 or involves some other anomalous isotope effect associated with CO₃ formation/dissociation.

Recently, Chakraborty and Bhattacharya [2003] have demonstrated a slope ~ 1.8 relating $\Delta(\delta^{17}\text{O}) \text{ vs.g}\Delta(\delta^{18}\text{O})$ in a laboratory experiment involving isotope exchange between ozone and CO₂ which is similar to the value in lower stratosphere. We have used a chemical reaction model to simulate their experimental data. The comparison of model predicted and experimentally observed data shows that the enrichment observed in CO₂ cannot be explained by a simple exchange. To explain the observed data it is necessary to invoke a mechanism which can enhance ${}^{17}O({}^{1}D)$ exchange rate relative to ${}^{18}O({}^{1}D)$ and ${}^{16}O({}^{1}D)$. It is known that the $O({}^{1}D)$ -CO₂ exchange is a spin forbidden reaction and requires presence of spin-orbit coupling. We propose that the nuclear spin of ${}^{17}O$ adds an extra component in the total spin–orbit coupling term enhancing the exchange rate of ${}^{17}O({}^{1}D)$. The data require a nuclear spin effect of nearly 12% relative to ${}^{18}O$ to give agreement with observed data. If true, this would be the first experimental demonstration of nuclear spin effect in isotope exchange.