Geophysical Research Abstracts, Vol. 9, 01619, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-01619 © European Geosciences Union 2007

Non-homogeneities in the accuracy of Earth gravity parameters from CHAMP, GRACE, and GOCE

J. Klokocnik (2,3), C. A. Wagner (1), D. McAdoo (1), J. Kostelecky (3,4), A. Bezdek (2), P. Novak (3,5)

(1) NOAA, Lab. Sat. Altimetry, Silver Spring, MD 20910-3226, USA (carl.wagner@noaa.gov, DaveMcAdoo@noaa.gov), (2) CEDR - Astr. Inst. Czech Acad. Sci., CZ-25165 Ondrejov (jklokocn@asu.cas.cz, bezdek@asu.cas.cz), (3) CEDR - Res. Inst. of Geodesy, CZ-25066 Zdiby (kost@fsv.cvut.cz), CTU in Prague, CZ-16629 Prague, (5) West Bohemia University, CZ-30000 Plzen (pavel.novak@pecny.cz)

The diminished resolution of solutions for variations of the gravity field from the Gravity Recovery And Climate Experiment (GRACE) around 2004 was related to the short orbit repeat cycle of R/D = 61/4 for the GRACE A/B satellites (R = 61 satellite's nodal revolutions per D = 4 synodic days). Similar situations may be encountered in the future free fall of the GRACE orbit. We use recent models of atmospheric density to estimate min/max drag and the orbit decrease of GRACE, providing a warning of possible future degradation. The densities of the ground tracks of CHAMP (CHAllenging Minisatellite Payload), GRACE or GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) and several other satellites are investigated to get a better insight into how these patterns and accuracy of the solved-for gravity parameters, are related. The density depends strongly not only on a "distance" from a low order R/D repeat (i.e. on time), but also on geographic latitude. Implications for GOCE are discussed, too, with some suggestions for orbit choice or tunning for the measuring phases of this mission.