Geophysical Research Abstracts, Vol. 9, 01331, 2007 SRef-ID: 1607-7962/gra/EGU2007-A-01331 © European Geosciences Union 2007

The properties of nonlinear chorus emissions related to the acceleration of relativistic electrons

O.P. Verkhoglyadova (1,2), Y. Omura (1), S. Yagitani (3), H. Kojima (1), B.T. Tsurutani (1,4) and H. Matsumoto (1)

(1) RISH, Kyoto University, Uji, Kyoto, Japan, (2) University of California at Riverside, USA (olgav@ucr.edu), (3) Kanazawa University, Kanazawa, JP, (4) Jet Propulsion Laboratory, Calif. Inst. Tech., Pasadena, CA, USA

Chorus emissions are generated by the loss-cone instability of freshly injected 10 to 40 keV magnetospheric (substorm) electrons. Chorus is highly nonlinear, and therefore time-averaged power spectra are insufficient to use in the study of relativistic electron acceleration. In this study we will examine five components (2 E and 3 B) GEO-TAIL waveform data for three types of chorus elements: rising tone, falling tone and structureless forms. The coherency of the waves and the high-time resolution wave amplitude versus time profiles will be examined in detail. Chorus is found to maximize at three regions in the magnetosphere: post-midnight, post-dawn and at minimum B pockets. We will make an assessment of where relativistic electron acceleration is most likely to take place.