MARS EXPRESS SCIENCE RESULTS AND GOALS
FOR THE EXTENDED MISSION

A.F. Chicarro
European Space Agency, Space Science Department, ESTEC/Code SCI-SB, Postbus 299, 2200 AG Noordwijk, The Netherlands (agustin.chicarro@esa.int)

The ESA Mars Express mission was successfully launched on 02 June 2003 from Baikonur, Kazakhstan, onboard a Russian Soyuz rocket with a Fregat upper stage. The mission comprises an orbiter spacecraft, which has been placed in a polar martian orbit, and the small Beagle-2 lander, due to land in Isidis Planitia but whose fate remains uncertain. In addition to global studies of the surface, subsurface and atmosphere of Mars, with an unprecedented spatial and spectral resolution, the unifying theme of the mission is the search for water in its various states everywhere on the planet. A summary of scientific results from all experiments after more than one Martian year in orbit (687 days) is given below.

The High-Resolution Stereo Colour Imager (HRSC) has shown breathtaking views of the planet, in particular of the Northern hemisphere, pointing to very young ages for both glacial and volcanic processes, from hundreds of thousands to a few million years old, respectively. The IR Mineralogical Mapping Spectrometer (OMEGA) has provided unprecedented maps of $\text{H}_2\text{O}$ ice and $\text{CO}_2$ ice in the polar regions, and determined that the alteration products (phylllosilicates) in the early history of Mars correspond to abundant liquid water, while the post-Noachian products (sulfates) suggest a colder, drier planet with only episodic water on the surface. The Planetary Fourier Spectrometer (PFS) has confirmed the presence of methane for the first time, which would indicate current volcanic activity and/or biological processes. The UV and IR Atmospheric Spectrometer (SPICAM) has provided the first complete vertical profile of $\text{CO}_2$ density and temperature, and has discovered the existence of nightglow as well as that of auroras over regions with paleomagnetic signatures. The Energetic Neutral Atoms Analyser (ASPERA) has identified solar wind scavenging of the upper atmosphere down to 270 km altitude as one of the main culprits of atmospheric degassing.
The Radio Science Experiment (MaRS) has studied the surface roughness by pointing the spacecraft high-gain antenna to the Martian surface. Also, the martian interior has been probed by studying the gravity anomalies affecting the orbit, and a transient ionospheric layer due to meteors burning in the atmosphere, identified by MaRS. Finally, results of the subsurface sounding radar (MARSIS) following the late deployment of its antennas due to safety concerns, indicate strong echoes coming from the surface and the subsurface allowing to identify buried craters and tectonic structures. Also, probing of the ionosphere reveals a variety of echoes originating in areas of remnant magnetism.

Mars Express is already hinting at a quantum leap in our understanding of the planet’s geological evolution, to be complemented by the ground truth being provided by the American MER rovers. The nominal mission lifetime of one Martian year for the orbiter spacecraft has already been extended by another Martian year. During the extended mission, priority will be given to fulfill the remaining goals of the nominal mission (e.g., gravity measurements and seasonal coverage), to catch up with delayed MARSIS measurements during the nominal mission, to complete global coverage of high-resolution imaging and spectroscopy, as well as subsurface sounding with the radar, to observe atmospheric and variable phenomena, and to revisit areas where discoveries were made. Also, an effort to enlarge the scope of existing cooperation will be made, in particular with respect to other missions to Mars (such as MGS, MER, MRO) and also missions to other planets carrying the same instruments as Mars Express (i.e. Venus Express). For further details on the Mars Express mission and its science: [http://sci.esa.int/marsexpress/](http://sci.esa.int/marsexpress/)